#=============================================================================== # Copyright 2020-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py Decision Forest Regression example for shared memory systems import daal4py as d4p import numpy as np import os from daal4py.oneapi import sycl_buffer # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except Exception: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2, dtype=t) try: from dpctx import device_context, device_type with device_context(device_type.gpu, 0): gpu_available = True except Exception: try: from daal4py.oneapi import sycl_context with sycl_context('gpu'): gpu_available = True except Exception: gpu_available = False # Commone code for both CPU and GPU computations def compute(train_data, train_labels, predict_data, method='defaultDense'): # Configure a training object train_algo = d4p.decision_forest_regression_training( nTrees=100, fptype='float', engine=d4p.engines_mt2203(seed=777), varImportance='MDA_Raw', bootstrap=True, resultsToCompute='computeOutOfBagError|computeOutOfBagErrorPerObservation', method=method ) # Training result provides (depending on parameters) model, # outOfBagError, outOfBagErrorPerObservation and/or variableImportance train_result = train_algo.compute(train_data, train_labels) # now predict using the model from the training above predict_algo = d4p.decision_forest_regression_prediction(fptype='float') predict_result = predict_algo.compute(predict_data, train_result.model) return train_result, predict_result # At this moment with sycl we are working only with numpy arrays def to_numpy(data): try: from pandas import DataFrame if isinstance(data, DataFrame): return np.ascontiguousarray(data.values) except Exception: try: from scipy.sparse import csr_matrix if isinstance(data, csr_matrix): return data.toarray() except Exception: return data return data def main(readcsv=read_csv, method='defaultDense'): nFeatures = 13 # input data file train_file = os.path.join('..', 'data', 'batch', 'df_regression_train.csv') predict_file = os.path.join('..', 'data', 'batch', 'df_regression_test.csv') # Read train data. Let's use 3 features per observation train_data = readcsv(train_file, range(nFeatures), t=np.float32) train_labels = readcsv(train_file, range(nFeatures, nFeatures + 1), t=np.float32) # Read test data (with same #features) predict_data = readcsv(predict_file, range(nFeatures), t=np.float32) predict_labels = readcsv(predict_file, range(nFeatures, nFeatures + 1), t=np.float32) # Using of the classic way (computations on CPU) train_result, predict_result = compute(train_data, train_labels, predict_data, "defaultDense") assert predict_result.prediction.shape == (predict_labels.shape[0], 1) assert (np.square(predict_result.prediction - predict_labels).mean() < 18).any() train_data = to_numpy(train_data) train_labels = to_numpy(train_labels) predict_data = to_numpy(predict_data) try: from dpctx import device_context, device_type def gpu_context(): return device_context(device_type.gpu, 0) except: from daal4py.oneapi import sycl_context def gpu_context(): return sycl_context('gpu') # It is possible to specify to make the computations on GPU if gpu_available: with gpu_context(): sycl_train_data = sycl_buffer(train_data) sycl_train_labels = sycl_buffer(train_labels) sycl_predict_data = sycl_buffer(predict_data) train_result, predict_result = compute(sycl_train_data, sycl_train_labels, sycl_predict_data, 'hist') assert predict_result.prediction.shape == (predict_labels.shape[0], 1) assert ( np.square(predict_result.prediction - predict_labels).mean() < 18 ).any() return (train_result, predict_result, predict_labels) if __name__ == "__main__": (train_result, predict_result, plabels) = main() print("\nVariable importance results:\n", train_result.variableImportance) print("\nOOB error:\n", train_result.outOfBagError) print( "\nDecision forest prediction results (first 10 rows):\n", predict_result.prediction[0:10] ) print("\nGround truth (first 10 rows):\n", plabels[0:10]) print('All looks good!')