#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py K-Means example for shared memory systems import daal4py as d4p import numpy as np import os from daal4py.oneapi import sycl_buffer # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) try: from dpctx import device_context, device_type with device_context(device_type.gpu, 0): gpu_available = True except: try: from daal4py.oneapi import sycl_context with sycl_context('gpu'): gpu_available = True except: gpu_available = False # Commone code for both CPU and GPU computations def compute(data, nClusters, maxIter, method): # configure kmeans init object initrain_algo = d4p.kmeans_init(nClusters, method=method, fptype='float') # compute initial centroids initrain_result = initrain_algo.compute(data) # configure kmeans main object: we also request the cluster assignments algo = d4p.kmeans(nClusters, maxIter, assignFlag=True, fptype='float') # compute the clusters/centroids return algo.compute(data, initrain_result.centroids) # Note: we could have done this in just one line: # return d4p.kmeans(nClusters, maxIter, assignFlag=True).compute( # data, d4p.kmeans_init(nClusters, method=method).compute(data).centroids # ) # At this moment with sycl we are working only with numpy arrays def to_numpy(data): try: from pandas import DataFrame if isinstance(data, DataFrame): return np.ascontiguousarray(data.values) except ImportError: pass try: from scipy.sparse import csr_matrix if isinstance(data, csr_matrix): return data.toarray() except ImportError: pass return data def main(readcsv=read_csv, method='randomDense'): infile = os.path.join('..', 'data', 'batch', 'kmeans_dense.csv') nClusters = 20 maxIter = 5 # Load the data data = readcsv(infile, range(20), t=np.float32) # Using of the classic way (computations on CPU) result_classic = compute(data, nClusters, maxIter, method) data = to_numpy(data) try: from dpctx import device_context, device_type def gpu_context(): return device_context(device_type.gpu, 0) def cpu_context(): return device_context(device_type.cpu, 0) except: from daal4py.oneapi import sycl_context def gpu_context(): return sycl_context('gpu') def cpu_context(): return sycl_context('cpu') # It is possible to specify to make the computations on GPU if gpu_available: with gpu_context(): sycl_data = sycl_buffer(data) result_gpu = compute(sycl_data, nClusters, maxIter, method) assert np.allclose(result_classic.centroids, result_gpu.centroids) assert np.allclose(result_classic.assignments, result_gpu.assignments) assert np.isclose(result_classic.objectiveFunction, result_gpu.objectiveFunction) # It is possible to specify to make the computations on CPU with cpu_context(): sycl_data = sycl_buffer(data) result_cpu = compute(sycl_data, nClusters, maxIter, method) # Kmeans result objects provide assignments (if requested), # centroids, goalFunction, nIterations and objectiveFunction assert result_classic.centroids.shape[0] == nClusters assert result_classic.assignments.shape == (data.shape[0], 1) assert result_classic.nIterations <= maxIter assert np.allclose(result_classic.centroids, result_cpu.centroids) assert np.allclose(result_classic.assignments, result_cpu.assignments) assert np.isclose(result_classic.objectiveFunction, result_cpu.objectiveFunction) assert result_classic.nIterations == result_cpu.nIterations return result_classic if __name__ == "__main__": result = main() print("\nFirst 10 cluster assignments:\n", result.assignments[0:10]) print("\nFirst 10 dimensions of centroids:\n", result.centroids[:, 0:10]) print("\nObjective function value:\n", result.objectiveFunction) print('All looks good!')