#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py Linear Regression example for shared memory systems import daal4py as d4p import numpy as np import os from daal4py.oneapi import sycl_buffer # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) try: from dpctx import device_context, device_type with device_context(device_type.gpu, 0): gpu_available = True except: try: from daal4py.oneapi import sycl_context with sycl_context('gpu'): gpu_available = True except: gpu_available = False # Commone code for both CPU and GPU computations def compute(train_indep_data, train_dep_data, test_indep_data): # Configure a Linear regression training object train_algo = d4p.linear_regression_training(interceptFlag=True, fptype='float') # Now train/compute, the result provides the model for prediction train_result = train_algo.compute(train_indep_data, train_dep_data) # Now let's do some prediction predict_algo = d4p.linear_regression_prediction(fptype='float') # now predict using the model from the training above return predict_algo.compute(test_indep_data, train_result.model), train_result # At this moment with sycl we are working only with numpy arrays def to_numpy(data): try: from pandas import DataFrame if isinstance(data, DataFrame): return np.ascontiguousarray(data.values) except ImportError: pass try: from scipy.sparse import csr_matrix if isinstance(data, csr_matrix): return data.toarray() except ImportError: pass return data def main(readcsv=read_csv, method='defaultDense'): # read training data. Let's have 10 independent, # and 2 dependent variables (for each observation) trainfile = os.path.join('..', 'data', 'batch', 'linear_regression_train.csv') train_indep_data = readcsv(trainfile, range(10), t=np.float32) train_dep_data = readcsv(trainfile, range(10, 12), t=np.float32) # read testing data testfile = os.path.join('..', 'data', 'batch', 'linear_regression_test.csv') test_indep_data = readcsv(testfile, range(10), t=np.float32) test_dep_data = readcsv(testfile, range(10, 12), t=np.float32) # Using of the classic way (computations on CPU) result_classic, train_result = \ compute(train_indep_data, train_dep_data, test_indep_data) train_indep_data = to_numpy(train_indep_data) train_dep_data = to_numpy(train_dep_data) test_indep_data = to_numpy(test_indep_data) try: from dpctx import device_context, device_type def gpu_context(): return device_context(device_type.gpu, 0) def cpu_context(): return device_context(device_type.cpu, 0) except: from daal4py.oneapi import sycl_context def gpu_context(): return sycl_context('gpu') def cpu_context(): return sycl_context('cpu') # It is possible to specify to make the computations on GPU if gpu_available: with gpu_context(): sycl_train_indep_data = sycl_buffer(train_indep_data) sycl_train_dep_data = sycl_buffer(train_dep_data) sycl_test_indep_data = sycl_buffer(test_indep_data) result_gpu, _ = compute(sycl_train_indep_data, sycl_train_dep_data, sycl_test_indep_data) assert np.allclose(result_classic.prediction, result_gpu.prediction, atol=1e-3) # It is possible to specify to make the computations on CPU with cpu_context(): sycl_train_indep_data = sycl_buffer(train_indep_data) sycl_train_dep_data = sycl_buffer(train_dep_data) sycl_test_indep_data = sycl_buffer(test_indep_data) result_cpu, _ = compute(sycl_train_indep_data, sycl_train_dep_data, sycl_test_indep_data) # The prediction result provides prediction assert result_classic.prediction.shape == (test_dep_data.shape[0], test_dep_data.shape[1]) assert np.allclose(result_classic.prediction, result_cpu.prediction) return (train_result, result_classic, test_dep_data) if __name__ == "__main__": (train_result, predict_result, test_dep_data) = main() print("\nLinear Regression coefficients:\n", train_result.model.Beta) print( "\nLinear Regression prediction results: (first 10 rows):\n", predict_result.prediction[0:10] ) print("\nGround truth (first 10 rows):\n", test_dep_data[0:10]) print('All looks good!')