#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py low order moments example for streaming on shared memory systems import daal4py as d4p import numpy as np import os from daal4py.oneapi import sycl_buffer # let's use a generator for getting stream from file (defined in stream.py) import sys sys.path.insert(0, '..') from stream import read_next try: from dpctx import device_context, device_type with device_context(device_type.gpu, 0): gpu_available = True except: try: from daal4py.oneapi import sycl_context with sycl_context('gpu'): gpu_available = True except: gpu_available = False # At this moment with sycl we are working only with numpy arrays def to_numpy(data): try: from pandas import DataFrame if isinstance(data, DataFrame): return np.ascontiguousarray(data.values) except ImportError: pass try: from scipy.sparse import csr_matrix if isinstance(data, csr_matrix): return data.toarray() except ImportError: pass return data def main(readcsv=None, method='defaultDense'): # read data from file infile = os.path.join('..', 'data', 'batch', 'covcormoments_dense.csv') # Using of the classic way (computations on CPU) # Configure a low order moments object for streaming algo = d4p.low_order_moments(streaming=True, fptype='float') # get the generator (defined in stream.py)... rn = read_next(infile, 55, readcsv) # ... and iterate through chunks/stream for chunk in rn: algo.compute(chunk) # finalize computation result_classic = algo.finalize() try: from dpctx import device_context, device_type def gpu_context(): return device_context(device_type.gpu, 0) def cpu_context(): return device_context(device_type.cpu, 0) except: from daal4py.oneapi import sycl_context def gpu_context(): return sycl_context('gpu') def cpu_context(): return sycl_context('cpu') # It is possible to specify to make the computations on GPU try: with gpu_context(): # Configure a low order moments object for streaming algo = d4p.low_order_moments(streaming=True, fptype='float') # get the generator (defined in stream.py)... rn = read_next(infile, 55, readcsv) # ... and iterate through chunks/stream for chunk in rn: sycl_chunk = sycl_buffer(to_numpy(chunk)) algo.compute(sycl_chunk) # finalize computation result_gpu = algo.finalize() for name in ['minimum', 'maximum', 'sum', 'sumSquares', 'sumSquaresCentered', 'mean', 'secondOrderRawMoment', 'variance', 'standardDeviation', 'variation']: assert np.allclose(getattr(result_classic, name), getattr(result_gpu, name)) except RuntimeError: pass # It is possible to specify to make the computations on CPU with cpu_context(): # Configure a low order moments object for streaming algo = d4p.low_order_moments(streaming=True, fptype='float') # get the generator (defined in stream.py)... rn = read_next(infile, 55, readcsv) # ... and iterate through chunks/stream for chunk in rn: sycl_chunk = sycl_buffer(to_numpy(chunk)) algo.compute(sycl_chunk) # finalize computation result_cpu = algo.finalize() # result provides minimum, maximum, sum, sumSquares, sumSquaresCentered, # mean, secondOrderRawMoment, variance, standardDeviation, variation for name in ['minimum', 'maximum', 'sum', 'sumSquares', 'sumSquaresCentered', 'mean', 'secondOrderRawMoment', 'variance', 'standardDeviation', 'variation']: assert np.allclose(getattr(result_classic, name), getattr(result_cpu, name)) return result_classic if __name__ == "__main__": res = main() # print results print("\nMinimum:\n", res.minimum) print("\nMaximum:\n", res.maximum) print("\nSum:\n", res.sum) print("\nSum of squares:\n", res.sumSquares) print("\nSum of squared difference from the means:\n", res.sumSquaresCentered) print("\nMean:\n", res.mean) print("\nSecond order raw moment:\n", res.secondOrderRawMoment) print("\nVariance:\n", res.variance) print("\nStandard deviation:\n", res.standardDeviation) print("\nVariation:\n", res.variation) print('All looks good!')