#=============================================================================== # Copyright 2014-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py PCA example for shared memory systems import daal4py as d4p import numpy as np import os from daal4py.oneapi import sycl_buffer # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c=None, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c=None, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) try: from dpctx import device_context, device_type with device_context(device_type.gpu, 0): gpu_available = True except: try: from daal4py.oneapi import sycl_context with sycl_context('gpu'): gpu_available = True except: gpu_available = False # Commone code for both CPU and GPU computations def compute(data): # 'normalization' is an optional parameter to PCA; # we use z-score which could be configured differently zscore = d4p.normalization_zscore(fptype="float") # configure a PCA object algo = d4p.pca(fptype="float", resultsToCompute="mean|variance|eigenvalue", isDeterministic=True, normalization=zscore) return algo.compute(data) # At this moment with sycl we are working only with numpy arrays def to_numpy(data): try: from pandas import DataFrame if isinstance(data, DataFrame): return np.ascontiguousarray(data.values) except ImportError: pass try: from scipy.sparse import csr_matrix if isinstance(data, csr_matrix): return data.toarray() except ImportError: pass return data def main(readcsv=read_csv, method='svdDense'): infile = os.path.join('..', 'data', 'batch', 'pca_normalized.csv') # Load the data data = readcsv(infile, t=np.float32) # Using of the classic way (computations on CPU) result_classic = compute(data) data = to_numpy(data) try: from dpctx import device_context, device_type def gpu_context(): return device_context(device_type.gpu, 0) def cpu_context(): return device_context(device_type.cpu, 0) except: from daal4py.oneapi import sycl_context def gpu_context(): return sycl_context('gpu') def cpu_context(): return sycl_context('cpu') # It is possible to specify to make the computations on GPU if gpu_available: with gpu_context(): sycl_data = sycl_buffer(data) result_gpu = compute(sycl_data) assert np.allclose(result_classic.eigenvalues, result_gpu.eigenvalues, atol=1e-5) assert np.allclose(result_classic.eigenvectors, result_gpu.eigenvectors, atol=1e-5) assert np.allclose(result_classic.means, result_gpu.means, atol=1e-5) assert np.allclose(result_classic.variances, result_gpu.variances, atol=1e-5) # It is possible to specify to make the computations on CPU with cpu_context(): sycl_data = sycl_buffer(data) result_cpu = compute(sycl_data) # PCA result objects provide eigenvalues, eigenvectors, means and variances assert result_classic.eigenvalues.shape == (1, data.shape[1]) assert result_classic.eigenvectors.shape == (data.shape[1], data.shape[1]) assert result_classic.means.shape == (1, data.shape[1]) assert result_classic.variances.shape == (1, data.shape[1]) assert np.allclose(result_classic.eigenvalues, result_cpu.eigenvalues) assert np.allclose(result_classic.eigenvectors, result_cpu.eigenvectors) assert np.allclose(result_classic.means, result_cpu.means, atol=1e-7) assert np.allclose(result_classic.variances, result_cpu.variances) return result_classic if __name__ == "__main__": result = main() print("\nEigenvalues:\n", result.eigenvalues) print("\nEigenvectors:\n", result.eigenvectors) print("\nMeans:\n", result.means) print("\nVariances:\n", result.variances) print('All looks good!')