#=============================================================================== # Copyright 2020-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py SVM example for shared memory systems import daal4py as d4p import numpy as np import os from daal4py.oneapi import sycl_buffer # let's try to use pandas' fast csv reader try: import pandas def read_csv(f, c, t=np.float64): return pandas.read_csv(f, usecols=c, delimiter=',', header=None, dtype=t) except ImportError: # fall back to numpy loadtxt def read_csv(f, c, t=np.float64): return np.loadtxt(f, usecols=c, delimiter=',', ndmin=2) try: from dpctx import device_context, device_type with device_context(device_type.gpu, 0): gpu_available = True except: try: from daal4py.oneapi import sycl_context with sycl_context('gpu'): gpu_available = True except: gpu_available = False # Common code for both CPU and GPU computations def compute(train_indep_data, train_dep_data, test_indep_data, method='defaultDense'): # Configure a SVM object to use linear kernel kernel_function = d4p.kernel_function_linear( fptype='float', method='defaultDense', k=1.0, b=0.0 ) train_algo = d4p.svm_training( fptype='float', method=method, kernel=kernel_function, C=1.0, accuracyThreshold=1e-3, tau=1e-8, cacheSize=600000000 ) train_result = train_algo.compute(train_indep_data, train_dep_data) # Create an algorithm object and call compute predict_algo = d4p.svm_prediction(fptype='float', kernel=kernel_function) predict_result = predict_algo.compute(test_indep_data, train_result.model) decision_result = predict_result.prediction predict_labels = np.where(decision_result >= 0, 1, -1) return predict_labels, decision_result # At this moment with sycl we are working only with numpy arrays def to_numpy(data): try: from pandas import DataFrame if isinstance(data, DataFrame): return np.ascontiguousarray(data.values) except ImportError: pass try: from scipy.sparse import csr_matrix if isinstance(data, csr_matrix): return data.toarray() except ImportError: pass return data def main(readcsv=read_csv): # input data file train_file = os.path.join('..', 'data', 'batch', 'svm_two_class_train_dense.csv') predict_file = os.path.join('..', 'data', 'batch', 'svm_two_class_test_dense.csv') nFeatures = 20 train_data = readcsv(train_file, range(nFeatures), t=np.float32) train_labels = readcsv(train_file, range(nFeatures, nFeatures + 1), t=np.float32) predict_data = readcsv(predict_file, range(nFeatures), t=np.float32) predict_labels = readcsv(predict_file, range(nFeatures, nFeatures + 1), t=np.float32) predict_result_classic, decision_function_classic = \ compute(train_data, train_labels, predict_data, 'boser') train_data = to_numpy(train_data) train_labels = to_numpy(train_labels) predict_data = to_numpy(predict_data) try: from dpctx import device_context, device_type def gpu_context(): return device_context(device_type.gpu, 0) def cpu_context(): return device_context(device_type.cpu, 0) except: from daal4py.oneapi import sycl_context def gpu_context(): return sycl_context('gpu') def cpu_context(): return sycl_context('cpu') # It is possible to specify to make the computations on GPU if gpu_available: with gpu_context(): sycl_train_data = sycl_buffer(train_data) sycl_train_labels = sycl_buffer(train_labels) sycl_predict_data = sycl_buffer(predict_data) predict_result_gpu, decision_function_gpu = \ compute(sycl_train_data, sycl_train_labels, sycl_predict_data, 'thunder') # assert np.allclose(predict_result_gpu, predict_result_classic) with cpu_context(): sycl_train_data = sycl_buffer(train_data) sycl_predict_data = sycl_buffer(predict_data) predict_result_cpu, decision_function_cpu = \ compute(sycl_train_data, train_labels, sycl_predict_data, 'thunder') assert np.allclose(predict_result_cpu, predict_result_classic) return predict_labels, predict_result_classic, decision_function_classic if __name__ == "__main__": predict_labels, predict_result, decision_function = main() np.set_printoptions(precision=0) print( "\nSVM classification decision function (first 10 observations):\n", decision_function[0:10] ) print( "\nSVM classification predict result (first 10 observations):\n", predict_result[0:10] ) print("\nGround truth (first 10 observations):\n", predict_labels[0:10]) print('All looks good!')