#=============================================================================== # Copyright 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== import pytest import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal from onedal.svm import NuSVC from sklearn.svm import NuSVC as SklearnNuSVC from sklearn import datasets from sklearn.datasets import make_blobs from sklearn.metrics.pairwise import rbf_kernel from sklearn.model_selection import train_test_split from onedal.tests.utils._device_selection import (get_queues, pass_if_not_implemented_for_gpu) def _test_libsvm_parameters(queue, array_constr, dtype): X = array_constr([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype=dtype) y = array_constr([1, 1, 1, 2, 2, 2], dtype=dtype) clf = NuSVC(kernel='linear').fit(X, y, queue=queue) assert_array_almost_equal( clf.dual_coef_, [[-0.04761905, -0.0952381, 0.0952381, 0.04761905]]) assert_array_equal(clf.support_, [0, 1, 3, 4]) assert_array_equal(clf.support_vectors_, X[clf.support_]) assert_array_equal(clf.intercept_, [0.]) assert_array_equal(clf.predict(X, queue=queue), y) @pass_if_not_implemented_for_gpu(reason="nusvc is not implemented") @pytest.mark.parametrize('queue', get_queues()) @pytest.mark.parametrize('array_constr', [np.array]) @pytest.mark.parametrize('dtype', [np.float32, np.float64]) def test_libsvm_parameters(queue, array_constr, dtype): _test_libsvm_parameters(queue, array_constr, dtype) @pass_if_not_implemented_for_gpu(reason="nusvc is not implemented") @pytest.mark.parametrize('queue', get_queues()) def test_class_weight(queue): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) y = np.array([1, 1, 1, 2, 2, 2]) clf = NuSVC(class_weight={1: 0.1}) clf.fit(X, y, queue=queue) assert_array_almost_equal(clf.predict(X, queue=queue), [2] * 6) @pass_if_not_implemented_for_gpu(reason="nusvc is not implemented") @pytest.mark.parametrize('queue', get_queues()) def test_sample_weight(queue): X = np.array([[-2, 0], [-1, -1], [0, -2], [0, 2], [1, 1], [2, 2]]) y = np.array([1, 1, 1, 2, 2, 2]) clf = NuSVC(kernel='linear') clf.fit(X, y, sample_weight=[1] * 6, queue=queue) assert_array_almost_equal(clf.intercept_, [0.0]) @pass_if_not_implemented_for_gpu(reason="nusvc is not implemented") @pytest.mark.parametrize('queue', get_queues()) def test_decision_function(queue): X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] Y = [1, 1, 1, 2, 2, 2] clf = NuSVC(kernel='rbf', gamma=1, decision_function_shape='ovo') clf.fit(X, Y, queue=queue) rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma) dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_ assert_array_almost_equal(dec.ravel(), clf.decision_function(X, queue=queue)) @pass_if_not_implemented_for_gpu(reason="nusvc is not implemented") @pytest.mark.parametrize('queue', get_queues()) def test_iris(queue): iris = datasets.load_iris() clf = NuSVC(kernel='linear').fit(iris.data, iris.target, queue=queue) assert clf.score(iris.data, iris.target, queue=queue) > 0.9 assert_array_equal(clf.classes_, np.sort(clf.classes_)) @pass_if_not_implemented_for_gpu(reason="nusvc is not implemented") @pytest.mark.parametrize('queue', get_queues()) def test_decision_function_shape(queue): X, y = make_blobs(n_samples=80, centers=5, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # check shape of ovo_decition_function=True clf = NuSVC(kernel='linear', decision_function_shape='ovo').fit(X_train, y_train, queue=queue) dec = clf.decision_function(X_train, queue=queue) assert dec.shape == (len(X_train), 10) # with pytest.raises(ValueError, match="must be either 'ovr' or 'ovo'"): # SVC(decision_function_shape='bad').fit(X_train, y_train) @pass_if_not_implemented_for_gpu(reason="nusvc is not implemented") @pytest.mark.parametrize('queue', get_queues()) def test_pickle(queue): iris = datasets.load_iris() clf = NuSVC(kernel='linear').fit(iris.data, iris.target, queue=queue) expected = clf.decision_function(iris.data, queue=queue) import pickle dump = pickle.dumps(clf) clf2 = pickle.loads(dump) assert type(clf2) == clf.__class__ result = clf2.decision_function(iris.data, queue=queue) assert_array_equal(expected, result) def _test_cancer_rbf_compare_with_sklearn(queue, nu, gamma): cancer = datasets.load_breast_cancer() clf = NuSVC(kernel='rbf', gamma=gamma, nu=nu) clf.fit(cancer.data, cancer.target, queue=queue) result = clf.score(cancer.data, cancer.target, queue=queue) clf = SklearnNuSVC(kernel='rbf', gamma=gamma, nu=nu) clf.fit(cancer.data, cancer.target) expected = clf.score(cancer.data, cancer.target) assert result > 0.4 assert abs(result - expected) < 1e-4 @pass_if_not_implemented_for_gpu(reason="nusvc is not implemented") @pytest.mark.parametrize('queue', get_queues()) @pytest.mark.parametrize('gamma', ['scale', 'auto']) @pytest.mark.parametrize('nu', [0.25, 0.5]) def test_cancer_rbf_compare_with_sklearn(queue, nu, gamma): _test_cancer_rbf_compare_with_sklearn(queue, nu, gamma) def _test_cancer_linear_compare_with_sklearn(queue, nu): cancer = datasets.load_breast_cancer() clf = NuSVC(kernel='linear', nu=nu) clf.fit(cancer.data, cancer.target, queue=queue) result = clf.score(cancer.data, cancer.target, queue=queue) clf = SklearnNuSVC(kernel='linear', nu=nu) clf.fit(cancer.data, cancer.target) expected = clf.score(cancer.data, cancer.target) assert result > 0.5 assert abs(result - expected) < 1e-3 @pass_if_not_implemented_for_gpu(reason="nusvc is not implemented") @pytest.mark.parametrize('queue', get_queues()) @pytest.mark.parametrize('nu', [0.25, 0.5]) def test_cancer_linear_compare_with_sklearn(queue, nu): _test_cancer_linear_compare_with_sklearn(queue, nu) def _test_cancer_poly_compare_with_sklearn(queue, params): cancer = datasets.load_breast_cancer() clf = NuSVC(kernel='poly', **params) clf.fit(cancer.data, cancer.target, queue=queue) result = clf.score(cancer.data, cancer.target, queue=queue) clf = SklearnNuSVC(kernel='poly', **params) clf.fit(cancer.data, cancer.target) expected = clf.score(cancer.data, cancer.target) assert result > 0.5 assert abs(result - expected) < 1e-4 @pass_if_not_implemented_for_gpu(reason="nusvc is not implemented") @pytest.mark.parametrize('queue', get_queues()) @pytest.mark.parametrize('params', [ {'degree': 2, 'coef0': 0.1, 'gamma': 'scale', 'nu': .25}, {'degree': 3, 'coef0': 0.0, 'gamma': 'scale', 'nu': .5} ]) def test_cancer_poly_compare_with_sklearn(queue, params): _test_cancer_poly_compare_with_sklearn(queue, params)