#=============================================================================== # Copyright 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== import pytest import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal from onedal.svm import SVC from sklearn.utils.estimator_checks import check_estimator import sklearn.utils.estimator_checks from sklearn import datasets from sklearn.metrics.pairwise import rbf_kernel from sklearn.datasets import make_blobs from sklearn.model_selection import train_test_split from onedal.tests.utils._device_selection import (get_queues, pass_if_not_implemented_for_gpu) def _replace_and_save(md, fns, replacing_fn): saved = dict() for check_f in fns: try: fn = getattr(md, check_f) setattr(md, check_f, replacing_fn) saved[check_f] = fn except RuntimeError: pass return saved def _restore_from_saved(md, saved_dict): for check_f in saved_dict: setattr(md, check_f, saved_dict[check_f]) def test_estimator(): def dummy(*args, **kwargs): pass md = sklearn.utils.estimator_checks saved = _replace_and_save(md, [ 'check_sample_weights_invariance', # Max absolute difference: 0.0008 'check_estimators_fit_returns_self', # ValueError: empty metadata 'check_classifiers_train', # assert y_pred.shape == (n_samples,) 'check_estimators_unfitted', # Call 'fit' with appropriate arguments 'check_estimator_sparse_data', # This fails with scikit-learn v1.0.2 ], dummy) check_estimator(SVC()) _restore_from_saved(md, saved) def _test_libsvm_parameters(queue, array_constr, dtype): X = array_constr([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype=dtype) y = array_constr([1, 1, 1, 2, 2, 2], dtype=dtype) clf = SVC(kernel='linear').fit(X, y, queue=queue) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.support_vectors_, (X[1], X[3])) assert_array_equal(clf.intercept_, [0.]) assert_array_equal(clf.predict(X), y) # TODO: investigate sporadic failures on GPU @pytest.mark.parametrize('queue', get_queues('host,cpu')) @pytest.mark.parametrize('array_constr', [np.array]) @pytest.mark.parametrize('dtype', [np.float32, np.float64]) def test_libsvm_parameters(queue, array_constr, dtype): _test_libsvm_parameters(queue, array_constr, dtype) @pytest.mark.parametrize('queue', get_queues('cpu') + [ pytest.param(get_queues('gpu'), marks=pytest.mark.xfail( reason="class weights are not implemented " "but the error is not raised"))]) def test_class_weight(queue): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) y = np.array([1, 1, 1, 2, 2, 2]) clf = SVC(class_weight={1: 0.1}) clf.fit(X, y, queue=queue) assert_array_almost_equal(clf.predict(X, queue=queue), [2] * 6) # TODO: investigate sporadic failures on GPU @pytest.mark.parametrize('queue', get_queues('host,cpu')) def test_sample_weight(queue): X = np.array([[-2, 0], [-1, -1], [0, -2], [0, 2], [1, 1], [2, 2]]) y = np.array([1, 1, 1, 2, 2, 2]) clf = SVC(kernel='linear') clf.fit(X, y, sample_weight=[1] * 6, queue=queue) assert_array_almost_equal(clf.intercept_, [0.0]) @pytest.mark.parametrize('queue', get_queues()) def test_decision_function(queue): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype=np.float32) Y = np.array([1, 1, 1, 2, 2, 2], dtype=np.float32) clf = SVC(kernel='rbf', gamma=1, decision_function_shape='ovo') clf.fit(X, Y, queue=queue) rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma) dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_ assert_array_almost_equal(dec.ravel(), clf.decision_function(X, queue=queue)) @pass_if_not_implemented_for_gpu(reason="multiclass svm is not implemented") @pytest.mark.parametrize('queue', get_queues()) def test_iris(queue): iris = datasets.load_iris() clf = SVC(kernel='linear').fit(iris.data, iris.target, queue=queue) assert clf.score(iris.data, iris.target, queue=queue) > 0.9 assert_array_equal(clf.classes_, np.sort(clf.classes_)) @pass_if_not_implemented_for_gpu(reason="multiclass svm is not implemented") @pytest.mark.parametrize('queue', get_queues()) def test_decision_function_shape(queue): X, y = make_blobs(n_samples=80, centers=5, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # check shape of ovo_decition_function=True clf = SVC(kernel='linear', decision_function_shape='ovo').fit(X_train, y_train, queue=queue) dec = clf.decision_function(X_train, queue=queue) assert dec.shape == (len(X_train), 10) with pytest.raises(ValueError, match="must be either 'ovr' or 'ovo'"): SVC(decision_function_shape='bad').fit(X_train, y_train, queue=queue) @pass_if_not_implemented_for_gpu(reason="multiclass svm is not implemented") @pytest.mark.parametrize('queue', get_queues()) def test_pickle(queue): iris = datasets.load_iris() clf = SVC(kernel='linear').fit(iris.data, iris.target, queue=queue) expected = clf.decision_function(iris.data, queue=queue) import pickle dump = pickle.dumps(clf) clf2 = pickle.loads(dump) assert type(clf2) == clf.__class__ result = clf2.decision_function(iris.data, queue=queue) assert_array_equal(expected, result) @pass_if_not_implemented_for_gpu(reason="sigmoid kernel is not implemented") @pytest.mark.parametrize('queue', get_queues('cpu') + [ pytest.param(get_queues('gpu'), marks=pytest.mark.xfail(reason="raises Unimplemented error " "with inconsistent error message"))]) @pytest.mark.parametrize('dtype', [np.float32, np.float64]) def test_svc_sigmoid(queue, dtype): X_train = np.array([[-1, 2], [0, 0], [2, -1], [+1, +1], [+1, +2], [+2, +1]], dtype=dtype) X_test = np.array([[0, 2], [0.5, 0.5], [0.3, 0.1], [2, 0], [-1, -1]], dtype=dtype) y_train = np.array([1, 1, 1, 2, 2, 2], dtype=dtype) svc = SVC(kernel='sigmoid').fit(X_train, y_train, queue=queue) assert_array_equal(svc.dual_coef_, [[-1, -1, -1, 1, 1, 1]]) assert_array_equal(svc.support_, [0, 1, 2, 3, 4, 5]) assert_array_equal(svc.predict(X_test, queue=queue), [2, 2, 1, 2, 1])