import numpy as np from numpy.compat import basestring from ..utils import derived_from from .core import asarray, blockwise, einsum_lookup einsum_symbols = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" einsum_symbols_set = set(einsum_symbols) def chunk_einsum(*operands, **kwargs): subscripts = kwargs.pop("subscripts") ncontract_inds = kwargs.pop("ncontract_inds") dtype = kwargs.pop("kernel_dtype") einsum = einsum_lookup.dispatch(type(operands[0])) chunk = einsum(subscripts, *operands, dtype=dtype, **kwargs) # Avoid concatenate=True in blockwise by adding 1's # for the contracted dimensions return chunk.reshape(chunk.shape + (1,) * ncontract_inds) # This function duplicates numpy's _parse_einsum_input() function # See https://github.com/numpy/numpy/blob/master/LICENSE.txt # or NUMPY_LICENSE.txt within this directory def parse_einsum_input(operands): """ A reproduction of numpy's _parse_einsum_input() which in itself is a reproduction of c side einsum parsing in python. Returns ------- input_strings : str Parsed input strings output_string : str Parsed output string operands : list of array_like The operands to use in the numpy contraction Examples -------- The operand list is simplified to reduce printing: >> a = np.random.rand(4, 4) >> b = np.random.rand(4, 4, 4) >> __parse_einsum_input(('...a,...a->...', a, b)) ('za,xza', 'xz', [a, b]) >> __parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0])) ('za,xza', 'xz', [a, b]) """ if len(operands) == 0: raise ValueError("No input operands") if isinstance(operands[0], basestring): subscripts = operands[0].replace(" ", "") operands = [asarray(o) for o in operands[1:]] # Ensure all characters are valid for s in subscripts: if s in ".,->": continue if s not in einsum_symbols_set: raise ValueError("Character %s is not a valid symbol." % s) else: tmp_operands = list(operands) operand_list = [] subscript_list = [] for p in range(len(operands) // 2): operand_list.append(tmp_operands.pop(0)) subscript_list.append(tmp_operands.pop(0)) output_list = tmp_operands[-1] if len(tmp_operands) else None operands = [asarray(v) for v in operand_list] subscripts = "" last = len(subscript_list) - 1 for num, sub in enumerate(subscript_list): for s in sub: if s is Ellipsis: subscripts += "..." elif isinstance(s, int): subscripts += einsum_symbols[s] else: raise TypeError( "For this input type lists must contain " "either int or Ellipsis" ) if num != last: subscripts += "," if output_list is not None: subscripts += "->" for s in output_list: if s is Ellipsis: subscripts += "..." elif isinstance(s, int): subscripts += einsum_symbols[s] else: raise TypeError( "For this input type lists must contain " "either int or Ellipsis" ) # Check for proper "->" if ("-" in subscripts) or (">" in subscripts): invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1) if invalid or (subscripts.count("->") != 1): raise ValueError("Subscripts can only contain one '->'.") # Parse ellipses if "." in subscripts: used = subscripts.replace(".", "").replace(",", "").replace("->", "") unused = list(einsum_symbols_set - set(used)) ellipse_inds = "".join(unused) longest = 0 if "->" in subscripts: input_tmp, output_sub = subscripts.split("->") split_subscripts = input_tmp.split(",") out_sub = True else: split_subscripts = subscripts.split(",") out_sub = False for num, sub in enumerate(split_subscripts): if "." in sub: if (sub.count(".") != 3) or (sub.count("...") != 1): raise ValueError("Invalid Ellipses.") # Take into account numerical values if operands[num].shape == (): ellipse_count = 0 else: ellipse_count = max(operands[num].ndim, 1) ellipse_count -= len(sub) - 3 if ellipse_count > longest: longest = ellipse_count if ellipse_count < 0: raise ValueError("Ellipses lengths do not match.") elif ellipse_count == 0: split_subscripts[num] = sub.replace("...", "") else: rep_inds = ellipse_inds[-ellipse_count:] split_subscripts[num] = sub.replace("...", rep_inds) subscripts = ",".join(split_subscripts) if longest == 0: out_ellipse = "" else: out_ellipse = ellipse_inds[-longest:] if out_sub: subscripts += "->" + output_sub.replace("...", out_ellipse) else: # Special care for outputless ellipses output_subscript = "" tmp_subscripts = subscripts.replace(",", "") for s in sorted(set(tmp_subscripts)): if s not in einsum_symbols_set: raise ValueError("Character %s is not a valid symbol." % s) if tmp_subscripts.count(s) == 1: output_subscript += s normal_inds = "".join(sorted(set(output_subscript) - set(out_ellipse))) subscripts += "->" + out_ellipse + normal_inds # Build output string if does not exist if "->" in subscripts: input_subscripts, output_subscript = subscripts.split("->") else: input_subscripts = subscripts # Build output subscripts tmp_subscripts = subscripts.replace(",", "") output_subscript = "" for s in sorted(set(tmp_subscripts)): if s not in einsum_symbols_set: raise ValueError("Character %s is not a valid symbol." % s) if tmp_subscripts.count(s) == 1: output_subscript += s # Make sure output subscripts are in the input for char in output_subscript: if char not in input_subscripts: raise ValueError("Output character %s did not appear in the input" % char) # Make sure number operands is equivalent to the number of terms if len(input_subscripts.split(",")) != len(operands): raise ValueError( "Number of einsum subscripts must be equal to the number of operands." ) return (input_subscripts, output_subscript, operands) @derived_from(np) def einsum(*operands, dtype=None, optimize=False, split_every=None, **kwargs): """Dask added an additional keyword-only argument ``split_every``. split_every: int >= 2 or dict(axis: int), optional Determines the depth of the recursive aggregation. Deafults to ``None`` which would let dask heuristically decide a good default. """ einsum_dtype = dtype inputs, outputs, ops = parse_einsum_input(operands) subscripts = "->".join((inputs, outputs)) # Infer the output dtype from operands if dtype is None: dtype = np.result_type(*[o.dtype for o in ops]) if optimize is not False: # Avoid computation of dask arrays within np.einsum_path # by passing in small numpy arrays broadcasted # up to the right shape fake_ops = [np.broadcast_to(o.dtype.type(0), shape=o.shape) for o in ops] optimize, _ = np.einsum_path(subscripts, *fake_ops, optimize=optimize) inputs = [tuple(i) for i in inputs.split(",")] # Set of all indices all_inds = {a for i in inputs for a in i} # Which indices are contracted? contract_inds = all_inds - set(outputs) ncontract_inds = len(contract_inds) # Introduce the contracted indices into the blockwise product # so that we get numpy arrays, not lists result = blockwise( chunk_einsum, tuple(outputs) + tuple(contract_inds), *(a for ap in zip(ops, inputs) for a in ap), # blockwise parameters adjust_chunks={ind: 1 for ind in contract_inds}, dtype=dtype, # np.einsum parameters subscripts=subscripts, kernel_dtype=einsum_dtype, ncontract_inds=ncontract_inds, optimize=optimize, **kwargs, ) # Now reduce over any extra contraction dimensions if ncontract_inds > 0: size = len(outputs) return result.sum( axis=list(range(size, size + ncontract_inds)), split_every=split_every ) return result