"""Bundle a graph's edges to emphasize the graph structure. Given a large graph, the underlying structure can be obscured by edges in close proximity. To uncover the group structure for clearer visualization, edges are split into smaller edges and bundled with neighbors. Ian Calvert's `Edgehammer`_ is the original implementation of the main algorithm. .. _Edgehammer: https://gitlab.com/ianjcalvert/edgehammer """ from __future__ import absolute_import, division, print_function from math import ceil from dask import compute, delayed from pandas import DataFrame try: import skimage from skimage.filters import gaussian, sobel_h, sobel_v except Exception: skimage = None import numba as nb import numpy as np import pandas as pd import param from .utils import ngjit @ngjit def distance_between(a, b): """Find the Euclidean distance between two points.""" return (((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2))**(0.5) @nb.jit def resample_segment(segments, new_segments, min_segment_length, max_segment_length, ndims): next_point = np.zeros(ndims, dtype=segments.dtype) current_point = segments[0] pos = 0 index = 1 while index < len(segments): next_point = segments[index] distance = distance_between(current_point, next_point) if (distance < min_segment_length and 1 < index < (len(segments) - 2)): # Merge points, because they're too close to each other current_point = (current_point + next_point) / 2 new_segments[pos] = current_point pos += 1 index += 2 elif distance > max_segment_length: # If points are too far away from each other, linearly place new points points = int(ceil(distance / ((max_segment_length + min_segment_length) / 2))) for i in range(points): new_segments[pos] = current_point + (i * ((next_point - current_point) / points)) pos += 1 current_point = next_point index += 1 else: # Do nothing, everything is good new_segments[pos] = current_point pos += 1 current_point = next_point index += 1 new_segments[pos] = next_point return new_segments @nb.jit def calculate_length(segments, min_segment_length, max_segment_length): current_point = segments[0] index = 1 total = 0 any_change = False while index < len(segments): next_point = segments[index] distance = distance_between(current_point, next_point) if (distance < min_segment_length and 1 < index < (len(segments) - 2)): any_change = True current_point = (current_point + next_point) / 2 total += 1 index += 2 elif distance > max_segment_length: any_change = True # Linear subsample points = int(ceil(distance / ((max_segment_length + min_segment_length) / 2))) total += points current_point = next_point index += 1 else: # Do nothing total += 1 current_point = next_point index += 1 total += 1 return any_change, total def resample_edge(segments, min_segment_length, max_segment_length, ndims): change, total_resamples = calculate_length(segments, min_segment_length, max_segment_length) if not change: return segments resampled = np.empty((total_resamples, ndims)) resample_segment(segments, resampled, min_segment_length, max_segment_length, ndims) return resampled @delayed def resample_edges(edge_segments, min_segment_length, max_segment_length, ndims): replaced_edges = [] for segments in edge_segments: replaced_edges.append(resample_edge(segments, min_segment_length, max_segment_length, ndims)) return replaced_edges @nb.jit def smooth_segment(segments, tension, idx, idy): seg_length = len(segments) - 2 for i in range(1, seg_length): previous, current, next_point = segments[i - 1], segments[i], segments[i + 1] current[idx] = ((1 - tension) * current[idx]) + (tension * (previous[idx] + next_point[idx]) / 2) current[idy] = ((1 - tension) * current[idy]) + (tension * (previous[idy] + next_point[idy]) / 2) def smooth(edge_segments, tension, idx, idy): for segments in edge_segments: smooth_segment(segments, tension, idx, idy) @ngjit def advect_segments(segments, vert, horiz, accuracy, idx, idy): for i in range(1, len(segments) - 1): x = int(segments[i][idx] * accuracy) y = int(segments[i][idy] * accuracy) segments[i][idx] = segments[i][idx] + horiz[x, y] / accuracy segments[i][idy] = segments[i][idy] + vert[x, y] / accuracy segments[i][idx] = max(0, min(segments[i][idx], 1)) segments[i][idy] = max(0, min(segments[i][idy], 1)) def advect_and_resample(vert, horiz, segments, iterations, accuracy, min_segment_length, max_segment_length, segment_class): for it in range(iterations): advect_segments(segments, vert, horiz, accuracy, segment_class.idx, segment_class.idy) if it % 2 == 0: segments = resample_edge(segments, min_segment_length, max_segment_length, segment_class.ndims) return segments @delayed def advect_resample_all(gradients, edge_segments, iterations, accuracy, min_segment_length, max_segment_length, segment_class): vert, horiz = gradients return [advect_and_resample(vert, horiz, edges, iterations, accuracy, min_segment_length, max_segment_length, segment_class) for edges in edge_segments] def batches(l, n): """Yield successive n-sized batches from l.""" for i in range(0, len(l), n): yield l[i:i + n] @delayed def draw_to_surface(edge_segments, bandwidth, accuracy, accumulator): img = np.zeros((accuracy + 1, accuracy + 1)) for segments in edge_segments: for point in segments: accumulator(img, point, accuracy) return gaussian(img, sigma=bandwidth / 2) @delayed def get_gradients(img): img /= np.max(img) horiz = sobel_h(img) vert = sobel_v(img) magnitude = np.sqrt(horiz**2 + vert**2) + 1e-5 vert /= magnitude horiz /= magnitude return (vert, horiz) class BaseSegment(object): @classmethod def create_delimiter(cls): return np.full((1, cls.ndims), np.nan) class UnweightedSegment(BaseSegment): ndims = 3 idx, idy = 1, 2 @staticmethod def get_columns(params): return ['edge_id', params.x, params.y] @staticmethod def get_merged_columns(params): return ['edge_id', 'src_x', 'src_y', 'dst_x', 'dst_y'] @staticmethod @nb.jit def create_segment(edge): return np.array([[edge[0], edge[1], edge[2]], [edge[0], edge[3], edge[4]]]) @staticmethod @ngjit def accumulate(img, point, accuracy): img[int(point[1] * accuracy), int(point[2] * accuracy)] += 1 class EdgelessUnweightedSegment(BaseSegment): ndims = 2 idx, idy = 0, 1 @staticmethod def get_columns(params): return [params.x, params.y] @staticmethod def get_merged_columns(params): return ['edge_id', 'src_x', 'src_y', 'dst_x', 'dst_y'] @staticmethod @nb.jit def create_segment(edge): return np.array([[edge[0], edge[1]], [edge[2], edge[3]]]) @staticmethod @ngjit def accumulate(img, point, accuracy): img[int(point[0] * accuracy), int(point[1] * accuracy)] += 1 class WeightedSegment(BaseSegment): ndims = 4 idx, idy = 1, 2 @staticmethod def get_columns(params): return ['edge_id', params.x, params.y, params.weight] @staticmethod def get_merged_columns(params): return ['edge_id', 'src_x', 'src_y', 'dst_x', 'dst_y', params.weight] @staticmethod @nb.jit def create_segment(edge): return np.array([[edge[0], edge[1], edge[2], edge[5]], [edge[0], edge[3], edge[4], edge[5]]]) @staticmethod @ngjit def accumulate(img, point, accuracy): img[int(point[1] * accuracy), int(point[2] * accuracy)] += point[3] class EdgelessWeightedSegment(BaseSegment): ndims = 3 idx, idy = 0, 1 @staticmethod def get_columns(params): return [params.x, params.y, params.weight] @staticmethod def get_merged_columns(params): return ['src_x', 'src_y', 'dst_x', 'dst_y', params.weight] @staticmethod @nb.jit def create_segment(edge): return np.array([[edge[0], edge[1], edge[4]], [edge[2], edge[3], edge[4]]]) @staticmethod @ngjit def accumulate(img, point, accuracy): img[int(point[0] * accuracy), int(point[1] * accuracy)] += point[2] def _convert_graph_to_edge_segments(nodes, edges, params): """ Merge graph dataframes into a list of edge segments. Given a graph defined as a pair of dataframes (nodes and edges), the nodes (id, coordinates) and edges (id, source, target, weight) are joined by node id to create a single dataframe with each source/target of an edge (including its optional weight) replaced with the respective coordinates. For both nodes and edges, each id column is assumed to be the index. We also return the dimensions of each point in the final dataframe and the accumulator function for drawing to an image. """ df = pd.merge(edges, nodes, left_on=[params.source], right_index=True) df = df.rename(columns={params.x: 'src_x', params.y: 'src_y'}) df = pd.merge(df, nodes, left_on=[params.target], right_index=True) df = df.rename(columns={params.x: 'dst_x', params.y: 'dst_y'}) df = df.sort_index() df = df.reset_index() if params.include_edge_id: df = df.rename(columns={'id': 'edge_id'}) include_weight = params.weight and params.weight in edges if params.include_edge_id: if include_weight: segment_class = WeightedSegment else: segment_class = UnweightedSegment else: if include_weight: segment_class = EdgelessWeightedSegment else: segment_class = EdgelessUnweightedSegment df = df.filter(items=segment_class.get_merged_columns(params)) edge_segments = [] for edge in df.values: edge_segments.append(segment_class.create_segment(edge)) return edge_segments, segment_class def _convert_edge_segments_to_dataframe(edge_segments, segment_class, params): """ Convert list of edge segments into a dataframe. For all edge segments, we create a dataframe to represent a path as successive points separated by a point with NaN as the x or y value. """ # Need to put an array of NaNs with size point_dims between edges def edge_iterator(): for edge in edge_segments: yield edge yield segment_class.create_delimiter() df = DataFrame(np.concatenate(list(edge_iterator()))) df.columns = segment_class.get_columns(params) return df class connect_edges(param.ParameterizedFunction): """ Convert a graph into paths suitable for datashading. Base class that connects each edge using a single line segment. Subclasses can add more complex algorithms for connecting with curved or manhattan-style polylines. """ x = param.String(default='x', doc=""" Column name for each node's x coordinate.""") y = param.String(default='y', doc=""" Column name for each node's y coordinate.""") source = param.String(default='source', doc=""" Column name for each edge's source.""") target = param.String(default='target', doc=""" Column name for each edge's target.""") weight = param.String(default=None, allow_None=True, doc=""" Column name for each edge weight. If None, weights are ignored.""") include_edge_id = param.Boolean(default=False, doc=""" Include edge IDs in bundled dataframe""") def __call__(self, nodes, edges, **params): """ Convert a graph data structure into a path structure for plotting Given a set of nodes (as a dataframe with a unique ID for each node) and a set of edges (as a dataframe with with columns for the source and destination IDs for each edge), returns a dataframe with with one path for each edge suitable for use with Datashader. The returned dataframe has columns for x and y location, with paths represented as successive points separated by a point with NaN as the x or y value. """ p = param.ParamOverrides(self, params) edges, segment_class = _convert_graph_to_edge_segments(nodes, edges, p) return _convert_edge_segments_to_dataframe(edges, segment_class, p) directly_connect_edges = connect_edges # For bockwards compatibility; deprecated def minmax_normalize(X, lower, upper): return (X - lower) / (upper - lower) def minmax_denormalize(X, lower, upper): return X * (upper - lower) + lower class hammer_bundle(connect_edges): """ Iteratively group edges and return as paths suitable for datashading. Breaks each edge into a path with multiple line segments, and iteratively curves this path to bundle edges into groups. """ initial_bandwidth = param.Number(default=0.05,bounds=(0.0,None),doc=""" Initial value of the bandwidth....""") decay = param.Number(default=0.7,bounds=(0.0,1.0),doc=""" Rate of decay in the bandwidth value, with 1.0 indicating no decay.""") iterations = param.Integer(default=4,bounds=(1,None),doc=""" Number of passes for the smoothing algorithm""") batch_size = param.Integer(default=20000,bounds=(1,None),doc=""" Number of edges to process together""") tension = param.Number(default=0.3,bounds=(0,None),precedence=-0.5,doc=""" Exponential smoothing factor to use when smoothing""") accuracy = param.Integer(default=500,bounds=(1,None),precedence=-0.5,doc=""" Number of entries in table for...""") advect_iterations = param.Integer(default=50,bounds=(0,None),precedence=-0.5,doc=""" Number of iterations to move edges along gradients""") min_segment_length = param.Number(default=0.008,bounds=(0,None),precedence=-0.5,doc=""" Minimum length (in data space?) for an edge segment""") max_segment_length = param.Number(default=0.016,bounds=(0,None),precedence=-0.5,doc=""" Maximum length (in data space?) for an edge segment""") weight = param.String(default='weight', allow_None=True, doc=""" Column name for each edge weight. If None, weights are ignored.""") def __call__(self, nodes, edges, **params): if skimage is None: raise ImportError("hammer_bundle operation requires scikit-image. " "Ensure you install the dependency before applying " "bundling.") p = param.ParamOverrides(self, params) # Calculate min/max for coordinates xmin, xmax = np.min(nodes[p.x]), np.max(nodes[p.x]) ymin, ymax = np.min(nodes[p.y]), np.max(nodes[p.y]) # Normalize coordinates nodes = nodes.copy() nodes[p.x] = minmax_normalize(nodes[p.x], xmin, xmax) nodes[p.y] = minmax_normalize(nodes[p.y], ymin, ymax) # Convert graph into list of edge segments edges, segment_class = _convert_graph_to_edge_segments(nodes, edges, p) # This is simply to let the work split out over multiple cores edge_batches = list(batches(edges, p.batch_size)) # This gets the edges split into lots of small segments # Doing this inside a delayed function lowers the transmission overhead edge_segments = [resample_edges(batch, p.min_segment_length, p.max_segment_length, segment_class.ndims) for batch in edge_batches] for i in range(p.iterations): # Each step, the size of the 'blur' shrinks bandwidth = p.initial_bandwidth * p.decay**(i + 1) * p.accuracy # If it's this small, there won't be a change anyway if bandwidth < 2: break # Draw the density maps and combine them images = [draw_to_surface(segment, bandwidth, p.accuracy, segment_class.accumulate) for segment in edge_segments] overall_image = sum(images) gradients = get_gradients(overall_image) # Move edges along the gradients and resample when necessary # This could include smoothing to adjust the amount a graph can change edge_segments = [advect_resample_all(gradients, segment, p.advect_iterations, p.accuracy, p.min_segment_length, p.max_segment_length, segment_class) for segment in edge_segments] # Do a final resample to a smaller size for nicer rendering edge_segments = [resample_edges(segment, p.min_segment_length, p.max_segment_length, segment_class.ndims) for segment in edge_segments] # Finally things can be sent for computation edge_segments = compute(*edge_segments) # Smooth out the graph for i in range(10): for batch in edge_segments: smooth(batch, p.tension, segment_class.idx, segment_class.idy) # Flatten things new_segs = [] for batch in edge_segments: new_segs.extend(batch) # Convert list of edge segments to Pandas dataframe df = _convert_edge_segments_to_dataframe(new_segs, segment_class, p) # Denormalize coordinates df[p.x] = minmax_denormalize(df[p.x], xmin, xmax) df[p.y] = minmax_denormalize(df[p.y], ymin, ymax) return df