""" Binary graphical composition operators See https://www.cairographics.org/operators/; more could easily be added from there. """ from __future__ import division import numba as nb import numpy as np import os image_operators = ('over', 'add', 'saturate', 'source') array_operators = ('add_arr', 'max_arr', 'min_arr', 'source_arr') __all__ = ('composite_op_lookup', 'validate_operator') + image_operators + array_operators def validate_operator(how, is_image): name = how if is_image else how + '_arr' if is_image: if name not in image_operators: raise ValueError('Operator %r not one of the supported image operators: %s' % (how, ', '.join(repr(el) for el in image_operators))) elif name not in array_operators: raise ValueError('Operator %r not one of the supported array operators: %s' % (how, ', '.join(repr(el[:-4]) for el in array_operators))) @nb.jit('(uint32,)', nopython=True, nogil=True, cache=True) def extract_scaled(x): """Extract components as float64 values in [0.0, 1.0]""" r = np.float64(( x & 255) / 255) g = np.float64(((x >> 8) & 255) / 255) b = np.float64(((x >> 16) & 255) / 255) a = np.float64(((x >> 24) & 255) / 255) return r, g, b, a @nb.jit('(float64, float64, float64, float64)', nopython=True, nogil=True, cache=True) def combine_scaled(r, g, b, a): """Combine components in [0, 1] to rgba uint32""" r2 = min(255, np.uint32(r * 255)) g2 = min(255, np.uint32(g * 255)) b2 = min(255, np.uint32(b * 255)) a2 = min(255, np.uint32(a * 255)) return np.uint32((a2 << 24) | (b2 << 16) | (g2 << 8) | r2) jit_enabled = os.environ.get('NUMBA_DISABLE_JIT', '0') == '0' if jit_enabled: extract_scaled.disable_compile() combine_scaled.disable_compile() # Lookup table for storing compositing operators by function name composite_op_lookup = {} def operator(f): """Define and register a new image composite operator""" if jit_enabled: f2 = nb.vectorize(f) f2._compile_for_argtys((nb.types.uint32, nb.types.uint32)) f2._frozen = True else: f2 = np.vectorize(f) composite_op_lookup[f.__name__] = f2 return f2 @operator def source(src, dst): if src & 0xff000000: return src else: return dst @operator def over(src, dst): sr, sg, sb, sa = extract_scaled(src) dr, dg, db, da = extract_scaled(dst) factor = 1 - sa a = sa + da * factor if a == 0: return np.uint32(0) r = (sr * sa + dr * da * factor)/a g = (sg * sa + dg * da * factor)/a b = (sb * sa + db * da * factor)/a return combine_scaled(r, g, b, a) @operator def add(src, dst): sr, sg, sb, sa = extract_scaled(src) dr, dg, db, da = extract_scaled(dst) a = min(1, sa + da) if a == 0: return np.uint32(0) r = (sr * sa + dr * da)/a g = (sg * sa + dg * da)/a b = (sb * sa + db * da)/a return combine_scaled(r, g, b, a) @operator def saturate(src, dst): sr, sg, sb, sa = extract_scaled(src) dr, dg, db, da = extract_scaled(dst) a = min(1, sa + da) if a == 0: return np.uint32(0) factor = min(sa, 1 - da) r = (factor * sr + dr * da)/a g = (factor * sg + dg * da)/a b = (factor * sb + db * da)/a return combine_scaled(r, g, b, a) def arr_operator(f): """Define and register a new array composite operator""" if jit_enabled: f2 = nb.vectorize(f) f2._compile_for_argtys( (nb.types.int32, nb.types.int32)) f2._compile_for_argtys( (nb.types.int64, nb.types.int64)) f2._compile_for_argtys( (nb.types.float32, nb.types.float32)) f2._compile_for_argtys( (nb.types.float64, nb.types.float64)) f2._frozen = True else: f2 = np.vectorize(f) composite_op_lookup[f.__name__] = f2 return f2 @arr_operator def source_arr(src, dst): if src: return src else: return dst @arr_operator def add_arr(src, dst): return src + dst @arr_operator def max_arr(src, dst): return max([src, dst]) @arr_operator def min_arr(src, dst): return min([src, dst])