import math from toolz import memoize import numpy as np from datashader.glyphs.glyph import Glyph from datashader.resampling import infer_interval_breaks from datashader.utils import isreal, ngjit, ngjit_parallel import numba from numba import cuda, prange try: import cupy from datashader.transfer_functions._cuda_utils import cuda_args except Exception: cupy = None cuda_args = None def _cuda_mapper(mapper): @cuda.jit def kernel(in_array, out_array): i, j = cuda.grid(2) if i < out_array.shape[0] and j < out_array.shape[1]: out_array[i, j] = mapper(in_array[i, j]) def cuda_map(in_array): out_array = cupy.zeros(in_array.shape, dtype='float64') in_array = cuda.to_device(in_array) kernel[cuda_args(in_array.shape)](in_array, out_array) return out_array return cuda_map class _QuadMeshLike(Glyph): def __init__(self, x, y, name): self.x = x self.y = y self.name = name @property def ndims(self): return 2 @property def inputs(self): return (self.x, self.y, self.name) def validate(self, in_dshape): if not isreal(in_dshape.measure[str(self.x)]): raise ValueError('x must be real') elif not isreal(in_dshape.measure[str(self.y)]): raise ValueError('y must be real') elif not isreal(in_dshape.measure[str(self.name)]): raise ValueError('aggregate value must be real') @property def x_label(self): return self.x @property def y_label(self): return self.y class QuadMeshRectilinear(_QuadMeshLike): def _compute_bounds_from_1d_centers( self, xr_ds, dim, maybe_expand=False, orient=True ): vals = xr_ds[dim].values # Assume dimension is sorted in ascending or descending order v0, v1, v_nm1, v_n = [ vals[i] for i in [0, 1, -2, -1] ] # Check if we should swap order if v_n < v0: descending = True v0, v1, v_nm1, v_n = v_n, v_nm1, v1, v0 else: descending = False bounds = (v0 - 0.5 * (v1 - v0), v_n + 0.5 * (v_n - v_nm1)) if not orient and descending: # swap back to descending order bounds = bounds[1], bounds[0] if maybe_expand: bounds = self.maybe_expand_bounds(bounds) return bounds def compute_x_bounds(self, xr_ds): return self._compute_bounds_from_1d_centers(xr_ds, self.x, maybe_expand=True) def compute_y_bounds(self, xr_ds): return self._compute_bounds_from_1d_centers(xr_ds, self.y, maybe_expand=True) def compute_bounds_dask(self, xr_ds): return self.compute_x_bounds(xr_ds), self.compute_y_bounds(xr_ds) def infer_interval_breaks(self, centers): # Infer breaks for 1D array of centers return infer_interval_breaks(centers) @memoize def _build_extend(self, x_mapper, y_mapper, info, append): x_name = self.x y_name = self.y name = self.name @ngjit @self.expand_aggs_and_cols(append) def perform_extend(i, j, xs, ys, *aggs_and_cols): x0i, x1i = xs[i], xs[i + 1] # Make sure x0 <= x1 if x0i > x1i: x0i, x1i = x1i, x0i # Make sure single pixel quads are represented if x0i == x1i: x1i += 1 y0i, y1i = ys[j], ys[j + 1] # Make sure y0 <= y1 if y0i > y1i: y0i, y1i = y1i, y0i # Make sure single pixel quads are represented if y0i == y1i: y1i += 1 # x1i and y1i are not included in the iteration. this # serves to avoid overlapping quads and it avoids the need # for special handling of quads that end on exactly on the # upper bound. for xi in range(x0i, x1i): for yi in range(y0i, y1i): append(j, i, xi, yi, *aggs_and_cols) @cuda.jit @self.expand_aggs_and_cols(append) def extend_cuda(xs, ys, *aggs_and_cols): i, j = cuda.grid(2) if i < (xs.shape[0] - 1) and j < (ys.shape[0] - 1): perform_extend(i, j, xs, ys, *aggs_and_cols) @ngjit @self.expand_aggs_and_cols(append) def extend_cpu(xs, ys, *aggs_and_cols): for i in range(len(xs) - 1): for j in range(len(ys) - 1): perform_extend(i, j, xs, ys, *aggs_and_cols) def extend(aggs, xr_ds, vt, bounds, x_breaks=None, y_breaks=None): from datashader.core import LinearAxis use_cuda = cupy and isinstance(xr_ds[name].data, cupy.ndarray) # Build axis transform (mapper) functions if use_cuda: x_mapper2 = _cuda_mapper(x_mapper) y_mapper2 = _cuda_mapper(y_mapper) else: x_mapper2 = x_mapper y_mapper2 = y_mapper # Convert from bin centers to interval edges if x_breaks is None: x_centers = xr_ds[x_name].values if use_cuda: x_centers = cupy.array(x_centers) x_breaks = self.infer_interval_breaks(x_centers) if y_breaks is None: y_centers = xr_ds[y_name].values if use_cuda: y_centers = cupy.array(y_centers) y_breaks = self.infer_interval_breaks(y_centers) x0, x1, y0, y1 = bounds xspan = x1 - x0 yspan = y1 - y0 if x_mapper is LinearAxis.mapper: xscaled = (x_breaks - x0) / xspan else: xscaled = (x_mapper2(x_breaks) - x0) / xspan if y_mapper is LinearAxis.mapper: yscaled = (y_breaks - y0) / yspan else: yscaled = (y_mapper2(y_breaks) - y0) / yspan xinds = np.where((xscaled >= 0) & (xscaled <= 1))[0] yinds = np.where((yscaled >= 0) & (yscaled <= 1))[0] if len(xinds) == 0 or len(yinds) == 0: # Nothing to do return xm0, xm1 = max(xinds.min() - 1, 0), xinds.max() + 1 ym0, ym1 = max(yinds.min() - 1, 0), yinds.max() + 1 plot_height, plot_width = aggs[0].shape[:2] # Downselect xs and ys and convert to int xs = (xscaled[xm0:xm1 + 1] * plot_width).astype(int).clip(0, plot_width) ys = (yscaled[ym0:ym1 + 1] * plot_height).astype(int).clip(0, plot_height) # For input "column", down select to valid range cols_full = info(xr_ds.transpose(y_name, x_name)) cols = tuple([c[ym0:ym1, xm0:xm1] for c in cols_full]) aggs_and_cols = aggs + cols if use_cuda: do_extend = extend_cuda[cuda_args(xr_ds[name].shape)] else: do_extend = extend_cpu do_extend(xs, ys, *aggs_and_cols) return extend @ngjit def build_scale_translate(out_size, out0, out1, src_size, src0, src1): translate_y = src_size * (out0 - src0) / (src1 - src0) scale_y = (src_size * (out1 - out0)) / (out_size * (src1 - src0)) return scale_y, translate_y class QuadMeshRaster(QuadMeshRectilinear): def is_upsample(self, source, x, y, name, x_range, y_range, out_w, out_h): # Check upsampling in x src_w = len(source[x]) if x_range is None: upsample_width = out_w >= src_w else: out_x0, out_x1 = x_range src_x0, src_x1 = self._compute_bounds_from_1d_centers( source, x, maybe_expand=False, orient=False ) src_xbinsize = math.fabs((src_x1 - src_x0) / src_w) out_xbinsize = math.fabs((out_x1 - out_x0) / out_w) upsample_width = src_xbinsize >= out_xbinsize # Check upsampling in y src_h = len(source[y]) if y_range is None: upsample_height = out_h >= src_h else: out_y0, out_y1 = y_range src_y0, src_y1 = self._compute_bounds_from_1d_centers( source, y, maybe_expand=False, orient=False ) src_ybinsize = math.fabs((src_y1 - src_y0) / src_h) out_ybinsize = math.fabs((out_y1 - out_y0) / out_h) upsample_height = src_ybinsize >= out_ybinsize return upsample_width, upsample_height @memoize def _build_extend(self, x_mapper, y_mapper, info, append): x_name = self.x y_name = self.y name = self.name @ngjit_parallel def upsample_cpu( src_w, src_h, translate_x, translate_y, scale_x, scale_y, offset_x, offset_y, out_w, out_h, agg, col ): for out_j in prange(out_h): src_j = int(math.floor(scale_y * (out_j + 0.5) + translate_y - offset_y)) for out_i in range(out_w): src_i = int(math.floor(scale_x * (out_i + 0.5) + translate_x - offset_x)) if src_j < 0 or src_j >= src_h or src_i < 0 or src_i >= src_w: agg[out_j, out_i] = np.nan else: agg[out_j, out_i] = col[src_j, src_i] @cuda.jit def upsample_cuda( src_w, src_h, translate_x, translate_y, scale_x, scale_y, offset_x, offset_y, out_w, out_h, agg, col ): out_i, out_j = cuda.grid(2) if out_i < out_w and out_j < out_h: src_j = int(math.floor(scale_y * (out_j + 0.5) + translate_y - offset_y)) src_i = int(math.floor(scale_x * (out_i + 0.5) + translate_x - offset_x)) if src_j < 0 or src_j >= src_h or src_i < 0 or src_i >= src_w: agg[out_j, out_i] = np.nan else: agg[out_j, out_i] = col[src_j, src_i] @ngjit_parallel @self.expand_aggs_and_cols(append) def downsample_cpu( src_w, src_h, translate_x, translate_y, scale_x, scale_y, offset_x, offset_y, out_w, out_h, *aggs_and_cols ): for out_j in prange(out_h): src_j0 = int(max( math.floor(scale_y * (out_j + 0.0) + translate_y - offset_y), 0 )) src_j1 = int(min( math.floor(scale_y * (out_j + 1.0) + translate_y - offset_y), src_h )) for out_i in range(out_w): src_i0 = int(max( math.floor(scale_x * (out_i + 0.0) + translate_x - offset_x), 0 )) src_i1 = int(min( math.floor(scale_x * (out_i + 1.0) + translate_x - offset_x), src_w )) for src_j in range(src_j0, src_j1): for src_i in range(src_i0, src_i1): append(src_j, src_i, out_i, out_j, *aggs_and_cols) @cuda.jit @self.expand_aggs_and_cols(append) def downsample_cuda( src_w, src_h, translate_x, translate_y, scale_x, scale_y, offset_x, offset_y, out_w, out_h, *aggs_and_cols ): out_i, out_j = cuda.grid(2) if out_i < out_w and out_j < out_h: src_j0 = max( math.floor(scale_y * (out_j + 0.0) + translate_y - offset_y), 0 ) src_j1 = min( math.floor(scale_y * (out_j + 1.0) + translate_y - offset_y), src_h ) src_i0 = max( math.floor(scale_x * (out_i + 0.0) + translate_x - offset_x), 0 ) src_i1 = min( math.floor(scale_x * (out_i + 1.0) + translate_x - offset_x), src_w ) for src_j in range(src_j0, src_j1): for src_i in range(src_i0, src_i1): append(src_j, src_i, out_i, out_j, *aggs_and_cols) def extend(aggs, xr_ds, vt, bounds, scale_x=None, scale_y=None, translate_x=None, translate_y=None, offset_x=None, offset_y=None, src_xbinsize=None, src_ybinsize=None): use_cuda = cupy and isinstance(xr_ds[name].data, cupy.ndarray) # Compute output constants out_h, out_w = aggs[0].shape out_x0, out_x1, out_y0, out_y1 = bounds out_xbinsize = math.fabs((out_x1 - out_x0) / out_w) out_ybinsize = math.fabs((out_y1 - out_y0) / out_h) # Compute source constants xr_ds = xr_ds.transpose(y_name, x_name) src_h, src_w = xr_ds[name].shape if (scale_x is None or scale_y is None or translate_x is None or translate_y is None or offset_x is None or offset_y is None or src_xbinsize is None or src_ybinsize is None ): # Compute bin sizes from bounds src_x0, src_x1 = self._compute_bounds_from_1d_centers( xr_ds, x_name, maybe_expand=False, orient=False ) src_y0, src_y1 = self._compute_bounds_from_1d_centers( xr_ds, y_name, maybe_expand=False, orient=False ) src_xbinsize = math.fabs((src_x1 - src_x0) / src_w) src_ybinsize = math.fabs((src_y1 - src_y0) / src_h) # Compute scale/translate scale_y, translate_y = build_scale_translate( out_h, out_y0, out_y1, src_h, src_y0, src_y1 ) scale_x, translate_x = build_scale_translate( out_w, out_x0, out_x1, src_w, src_x0, src_x1 ) offset_x = offset_y = 0 # Build aggs_and_cols tuple cols = info(xr_ds) aggs_and_cols = tuple(aggs) + tuple(cols) if src_h == 0 or src_w == 0 or out_h == 0 or out_w == 0: # Nothing to do return elif src_xbinsize >= out_xbinsize and src_ybinsize >= out_ybinsize: # Upsample if use_cuda: do_sampling = upsample_cuda[cuda_args((out_w, out_h))] else: do_sampling = upsample_cpu return do_sampling( src_w, src_h, translate_x, translate_y, scale_x, scale_y, offset_x, offset_y, out_w, out_h, aggs[0], cols[0] ) else: # Downsample. Note that caller is responsible for making sure to not # mix upsampling and downsampling. if use_cuda: do_sampling = downsample_cuda[cuda_args((out_w, out_h))] else: do_sampling = downsample_cpu return do_sampling( src_w, src_h, translate_x, translate_y, scale_x, scale_y, offset_x, offset_y, out_w, out_h, *aggs_and_cols ) return extend class QuadMeshCurvilinear(_QuadMeshLike): def compute_x_bounds(self, xr_ds): x_breaks = self.infer_interval_breaks(xr_ds[self.x].values) bounds = Glyph._compute_bounds_2d(x_breaks) return self.maybe_expand_bounds(bounds) def compute_y_bounds(self, xr_ds): y_breaks = self.infer_interval_breaks(xr_ds[self.y].values) bounds = Glyph._compute_bounds_2d(y_breaks) return self.maybe_expand_bounds(bounds) def compute_bounds_dask(self, xr_ds): return self.compute_x_bounds(xr_ds), self.compute_y_bounds(xr_ds) def infer_interval_breaks(self, centers): # Infer breaks for 1D array of centers breaks = infer_interval_breaks(centers, axis=1) breaks = infer_interval_breaks(breaks, axis=0) return breaks @memoize def _build_extend(self, x_mapper, y_mapper, info, append): x_name = self.x y_name = self.y name = self.name @ngjit @self.expand_aggs_and_cols(append) def perform_extend( i, j, plot_height, plot_width, xs, ys, xverts, yverts, yincreasing, eligible, intersect, *aggs_and_cols ): # make array of quad x any vertices xverts[0] = xs[j, i] xverts[1] = xs[j, i + 1] xverts[2] = xs[j + 1, i + 1] xverts[3] = xs[j + 1, i] xverts[4] = xverts[0] yverts[0] = ys[j, i] yverts[1] = ys[j, i + 1] yverts[2] = ys[j + 1, i + 1] yverts[3] = ys[j + 1, i] yverts[4] = yverts[0] # Compute the rectilinear bounding box around the quad and # skip quad if there is no chance for it to intersect # viewport xmin = min(min(xverts[0], xverts[1]), min(xverts[2], xverts[3])) if xmin >= plot_width: return xmin = max(xmin, 0) xmax = max(max(xverts[0], xverts[1]), max(xverts[2], xverts[3])) if xmax < 0: return xmax = min(xmax, plot_width) ymin = min(min(yverts[0], yverts[1]), min(yverts[2], yverts[3])) if ymin >= plot_height: return ymin = max(ymin, 0) ymax = max(max(yverts[0], yverts[1]), max(yverts[2], yverts[3])) if ymax < 0: return ymax = min(ymax, plot_height) # Handle subpixel quads if xmin == xmax or ymin == ymax: # If either dimension is a single pixel, then render it if xmin == xmax and xmax < plot_width: xmax += 1 if ymin == ymax and ymax < plot_height: ymax += 1 for yi in range(ymin, ymax): for xi in range(xmin, xmax): append(j, i, xi, yi, *aggs_and_cols) return # make yincreasing an array holding whether each edge is # increasing vertically (+1), decreasing vertically (-1), # or horizontal (0). yincreasing[:] = 0 for k in range(4): if yverts[k + 1] > yverts[k]: yincreasing[k] = 1 elif yverts[k + 1] < yverts[k]: yincreasing[k] = -1 for yi in range(ymin, ymax): eligible[:] = 1 for xi in range(xmin, xmax): intersect[:] = 0 # Test edges for edge_i in range(4): # Skip if we already know edge is ineligible if not eligible[edge_i]: continue # Check if edge is fully to left of point. If # so, we don't need to consider it again for # this row. if ((xverts[edge_i] < xi) and (xverts[edge_i + 1] < xi)): eligible[edge_i] = 0 continue # Check if edge is fully above or below point. # If so, we don't need to consider it again # for this row. if ((yverts[edge_i] > yi) == (yverts[edge_i + 1] > yi)): eligible[edge_i] = 0 continue # Now check if edge is to the right of point. # A is vector from point to first vertex ax = xverts[edge_i] - xi ay = yverts[edge_i] - yi # B is vector from point to second vertex bx = xverts[edge_i + 1] - xi by = yverts[edge_i + 1] - yi # Compute cross product of B and A bxa = (bx * ay - by * ax) # If cross product has same sign as yincreasing # then edge intersects to the right intersect[edge_i] = ( bxa * yincreasing[edge_i] < 0 ) intersections = ( intersect[0] + intersect[1] + intersect[2] + intersect[3] ) if intersections % 2 == 1: # If odd number of intersections, point # is inside quad append(j, i, xi, yi, *aggs_and_cols) @cuda.jit @self.expand_aggs_and_cols(append) def extend_cuda(plot_height, plot_width, xs, ys, *aggs_and_cols): # # For consistency with CPU path, we initialize all arrays here # # xverts/yverts arrays xverts = cuda.local.array(5, dtype=numba.types.int32) yverts = cuda.local.array(5, dtype=numba.types.int32) # # # Array holding whether each edge is increasing # # vertically (+1), decreasing vertically (-1), # # or horizontal (0). yincreasing = cuda.local.array(4, dtype=numba.types.int8) # # Array that will hold mask of whether edges are # # eligible for intersection tests eligible = cuda.local.array(4, dtype=numba.types.int8) # # Array that will hold a mask of whether edges # # intersect the ray to the right of test point intersect = cuda.local.array(4, dtype=numba.types.int8) i, j = cuda.grid(2) if i < (xs.shape[0] - 1) and j < (ys.shape[0] - 1): perform_extend( i, j, plot_height, plot_width, xs, ys, xverts, yverts, yincreasing, eligible, intersect, *aggs_and_cols ) @ngjit @self.expand_aggs_and_cols(append) def extend_cpu(plot_height, plot_width, xs, ys, *aggs_and_cols): # For performance, we initialize all arrays once before the loop # xverts/yverts arrays xverts = np.zeros(5, dtype=np.int32) yverts = np.zeros(5, dtype=np.int32) # Array holding whether each edge is increasing # vertically (+1), decreasing vertically (-1), # or horizontal (0). yincreasing = np.zeros(4, dtype=np.int8) # Array that will hold mask of whether edges are # eligible for intersection tests eligible = np.ones(4, dtype=np.int8) # Array that will hold a mask of whether edges # intersect the ray to the right of test point intersect = np.zeros(4, dtype=np.int8) y_len, x_len, = xs.shape for i in range(x_len - 1): for j in range(y_len - 1): perform_extend( i, j, plot_height, plot_width, xs, ys, xverts, yverts, yincreasing, eligible, intersect, *aggs_and_cols ) def extend(aggs, xr_ds, vt, bounds, x_breaks=None, y_breaks=None): from datashader.core import LinearAxis use_cuda = cupy and isinstance(xr_ds[name].data, cupy.ndarray) # Build axis transform (mapper) functions if use_cuda: x_mapper2 = _cuda_mapper(x_mapper) y_mapper2 = _cuda_mapper(y_mapper) else: x_mapper2 = x_mapper y_mapper2 = y_mapper # Convert from bin centers to interval edges if x_breaks is None: x_centers = xr_ds[x_name].values if use_cuda: x_centers = cupy.array(x_centers) x_breaks = self.infer_interval_breaks(x_centers) if y_breaks is None: y_centers = xr_ds[y_name].values if use_cuda: y_centers = cupy.array(y_centers) y_breaks = self.infer_interval_breaks(y_centers) # Scale x and y vertices into integer canvas coordinates x0, x1, y0, y1 = bounds xspan = x1 - x0 yspan = y1 - y0 if x_mapper is LinearAxis.mapper: xscaled = (x_breaks - x0) / xspan else: xscaled = (x_mapper2(x_breaks) - x0) / xspan if y_mapper is LinearAxis.mapper: yscaled = (y_breaks - y0) / yspan else: yscaled = (y_mapper2(y_breaks) - y0) / yspan plot_height, plot_width = aggs[0].shape[:2] xs = (xscaled * plot_width).astype(int) ys = (yscaled * plot_height).astype(int) coord_dims = xr_ds.coords[x_name].dims aggs_and_cols = aggs + info(xr_ds.transpose(*coord_dims)) if use_cuda: do_extend = extend_cuda[cuda_args(xr_ds[name].shape)] else: do_extend = extend_cpu do_extend( plot_height, plot_width, xs, ys, *aggs_and_cols ) return extend