""" This module was adapted from https://github.com/CAB-LAB/gridtools The MIT License (MIT) Copyright (c) 2016, Brockmann Consult GmbH and contributors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import absolute_import, division, print_function import sys import datetime as dt from itertools import groupby from math import floor, ceil import dask.array as da import numpy as np from dask.delayed import delayed from numba import prange from .utils import ngjit, ngjit_parallel try: import cupy except Exception: cupy = None #: Interpolation method for upsampling: Take nearest source grid cell, even if it is invalid. US_NEAREST = 10 #: Interpolation method for upsampling: Bi-linear interpolation between the 4 nearest source grid cells. US_LINEAR = 11 #: Aggregation method for downsampling: Take first valid source grid cell, ignore contribution areas. DS_FIRST = 50 #: Aggregation method for downsampling: Take last valid source grid cell, ignore contribution areas. DS_LAST = 51 #: Aggregation method for downsampling: Take the minimum source grid cell value, ignore contribution areas. DS_MIN = 52 #: Aggregation method for downsampling: Take the maximum source grid cell value, ignore contribution areas. DS_MAX = 53 #: Aggregation method for downsampling: Compute average of all valid source grid cells, #: with weights given by contribution area. DS_MEAN = 54 # DS_MEDIAN = 55 #: Aggregation method for downsampling: Compute most frequently seen valid source grid cell, #: with frequency given by contribution area. Note that this mode can use an additional keyword argument #: *mode_rank* which can be used to generate the n-th mode. See :py:function:`downsample_2d`. DS_MODE = 56 #: Aggregation method for downsampling: Compute the biased weighted estimator of variance #: (see https://en.wikipedia.org/wiki/Mean_square_weighted_deviation), with weights given by contribution area. DS_VAR = 57 #: Aggregation method for downsampling: Compute the corresponding standard deviation to the biased weighted estimator #: of variance #: (see https://en.wikipedia.org/wiki/Mean_square_weighted_deviation), with weights given by contribution area. DS_STD = 58 #: Constant indicating an empty 2-D mask _NOMASK2D = np.ma.getmaskarray(np.ma.array([[0]], mask=[[0]])) _EPS = 1e-10 upsample_methods = dict(nearest=US_NEAREST, linear=US_LINEAR) downsample_methods = dict(first=DS_FIRST, last=DS_LAST, mode=DS_MODE, mean=DS_MEAN, var=DS_VAR, std=DS_STD, min=DS_MIN, max=DS_MAX) def map_chunks(in_shape, out_shape, out_chunks): """ Maps index in source array to target array chunks. For each chunk in the target array this function computes the indexes into the source array that will be fed into the regridding operation. Parameters ---------- in_shape: tuple(int, int) The shape of the input array out_shape: tuple(int, int) The shape of the output array out_chunks: tuple(int, int) The shape of each chunk in the output array Returns ------- Dictionary mapping of chunks and their indexes in the input and output array. """ outy, outx = out_shape cys, cxs = out_chunks xchunks = list(range(0, outx, cxs)) + [outx] ychunks = list(range(0, outy, cys)) + [outy] iny, inx = in_shape xscale = inx/outx yscale = iny/outy mapping = {} for i in range(len(ychunks)-1): cumy0, cumy1 = ychunks[i:i+2] iny0, iny1 = cumy0*yscale, cumy1*yscale iny0r, iny1r = floor(iny0), ceil(iny1) y0_off, y1_off = iny0-iny0r, iny1r-iny1 for j in range(len(xchunks)-1): cumx0, cumx1 = xchunks[j:j+2] inx0, inx1 = cumx0*xscale, cumx1*xscale inx0r, inx1r = floor(inx0), ceil(inx1) x0_off, x1_off = inx0-inx0r, inx1r-inx1 mapping[(i, j)] = { 'out': { 'x': (cumx0, cumx1), 'y': (cumy0, cumy1), 'w': (cumx1-cumx0), 'h': (cumy1-cumy0), }, 'in': { 'x': (inx0r, inx1r), 'y': (iny0r, iny1r), 'xoffset': (x0_off, x1_off), 'yoffset': (y0_off, y1_off), } } return mapping def compute_chunksize(src, w, h, chunksize=None, max_mem=None): """ Attempts to compute a chunksize for the resampling output array that is as close as possible to the input array chunksize, while also respecting the maximum memory constraint to avoid loading to much data into memory at the same time. Parameters ---------- src : dask.array.Array The source array to resample w : int New grid width h : int New grid height chunksize : tuple(int, int) (optional) Size of the output chunks. By default the chunk size is inherited from the *src* array. max_mem : int (optional) The maximum number of bytes that should be loaded into memory during the regridding operation. Returns ------- chunksize : tuple(int, int) Size of the output chunks. """ start_chunksize = src.chunksize if chunksize is None else chunksize if max_mem is None: return start_chunksize sh, sw = src.shape height_fraction = float(sh)/h width_fraction = float(sw)/w ch, cw = start_chunksize dim = True nbytes = src.dtype.itemsize while ((ch * height_fraction) * (cw * width_fraction) * nbytes) > max_mem: if dim: cw -= 1 else: ch -= 1 dim = not dim if ch == 0 or cw == 0: min_mem = height_fraction * width_fraction * nbytes raise ValueError( "Given the memory constraints the resampling operation " "could not find a chunksize that avoids loading too much " "data into memory. Either relax the memory constraint to " "a minimum of %d bytes or resample to a larger grid size. " "Note: A future implementation could handle this condition " "by declaring temporary arrays." % min_mem) return ch, cw def resample_2d_distributed(src, w, h, ds_method='mean', us_method='linear', fill_value=None, mode_rank=1, chunksize=None, max_mem=None): """ A distributed version of 2-d grid resampling which operates on dask arrays and performs regridding on a chunked array. Parameters ---------- src : dask.array.Array The source array to resample w : int New grid width h : int New grid height ds_method : str (optional) Grid cell aggregation method for a possible downsampling (one of the *DS_* constants). us_method : str (optional) Grid cell interpolation method for a possible upsampling (one of the *US_* constants, optional). fill_value : scalar (optional) If None, numpy's default value is used. mode_rank : scalar (optional) The rank of the frequency determined by the *ds_method* ``DS_MODE``. One (the default) means most frequent value, two means second most frequent value, and so forth. chunksize : tuple(int, int) (optional) Size of the output chunks. By default this the chunk size is inherited from the *src* array. max_mem : int (optional) The maximum number of bytes that should be loaded into memory during the regridding operation. Returns ------- resampled : dask.array.Array A resampled version of the *src* array. """ temp_chunks = compute_chunksize(src, w, h, chunksize, max_mem) if chunksize is None: chunksize = src.chunksize chunk_map = map_chunks(src.shape, (h, w), temp_chunks) out_chunks = {} for (i, j), chunk in chunk_map.items(): inds = chunk['in'] inx0, inx1 = inds['x'] iny0, iny1 = inds['y'] out = chunk['out'] chunk_array = src[iny0:iny1, inx0:inx1] resampled = _resample_2d_delayed( chunk_array, out['w'], out['h'], ds_method, us_method, fill_value, mode_rank, inds['xoffset'], inds['yoffset']) out_chunks[(i, j)] = { 'array': resampled, 'shape': (out['h'], out['w']), 'dtype': src.dtype, 'in': chunk['in'], 'out': out } rows = groupby(out_chunks.items(), lambda x: x[0][0]) cols = [] for i, row in rows: row = da.concatenate([ da.from_delayed(chunk['array'], chunk['shape'], chunk['dtype']) for _, chunk in row], 1) cols.append(row) out = da.concatenate(cols, 0) # Ensure chunksize conforms to specified chunksize if chunksize is not None and out.chunksize != chunksize: out = out.rechunk(chunksize) return out def resample_2d(src, w, h, ds_method='mean', us_method='linear', fill_value=None, mode_rank=1, x_offset=(0, 0), y_offset=(0, 0), out=None): """ Resample a 2-D grid to a new resolution. Parameters ---------- src : np.ndarray The source array to resample w : int New grid width h : int New grid height ds_method : str (optional) Grid cell aggregation method for a possible downsampling (one of the *DS_* constants). us_method : str (optional) Grid cell interpolation method for a possible upsampling (one of the *US_* constants, optional). fill_value : scalar (optional) If ``None``, it is taken from **src** if it is a masked array, otherwise from *out* if it is a masked array, otherwise numpy's default value is used. mode_rank : scalar (optional) The rank of the frequency determined by the *ds_method* ``DS_MODE``. One (the default) means most frequent value, zwo means second most frequent value, and so forth. x_offset : tuple(float, float) (optional) Offsets for the x-axis indices in the source array (useful for distributed regridding where chunks are not aligned with the underlying array). y_offset : tuple(float, float) (optional) Offsets for the x-axis indices in the source array (useful for distributed regridding where chunks are not aligned with the underlying array). out : numpy.ndarray (optional) Alternate output array in which to place the result. The default is *None*; if provided, it must have the same shape as the expected output. Returns ------- resampled : numpy.ndarray or dask.array.Array A resampled version of the *src* array. """ out = _get_out(out, src, (h, w)) if out is None: return src mask, use_mask = _get_mask(src) fill_value = _get_fill_value(fill_value, src, out) us_method=upsample_methods[us_method] ds_method=downsample_methods[ds_method] resampled = _resample_2d(src, mask, use_mask, ds_method, us_method, fill_value, mode_rank, x_offset, y_offset, out) return _mask_or_not(resampled, src, fill_value) _resample_2d_delayed = delayed(resample_2d) def upsample_2d(src, w, h, method=US_LINEAR, fill_value=None, out=None): """ Upsample a 2-D grid to a higher resolution by interpolating original grid cells. src: 2-D *ndarray* w: *int* Grid width, which must be greater than or equal to *src.shape[-1]* h: *int* Grid height, which must be greater than or equal to *src.shape[-2]* method: one of the *US_* constants, optional Grid cell interpolation method fill_value: *scalar*, optional If ``None``, it is taken from **src** if it is a masked array, otherwise from *out* if it is a masked array, otherwise numpy's default value is used. out: 2-D *ndarray*, optional Alternate output array in which to place the result. The default is *None*; if provided, it must have the same shape as the expected output. Returns ------- upsampled : numpy.ndarray or dask.array.Array An upsampled version of the *src* array. """ out = _get_out(out, src, (h, w)) if out is None: return src mask, use_mask = _get_mask(src) fill_value = _get_fill_value(fill_value, src, out) if method not in UPSAMPLING_METHODS: raise ValueError('invalid upsampling method') upsampling_method = UPSAMPLING_METHODS[method] upsampled = upsampling_method( src, mask, use_mask, fill_value, (0, 0), (0, 0), out) return _mask_or_not(upsampled, src, fill_value) def downsample_2d(src, w, h, method=DS_MEAN, fill_value=None, mode_rank=1, out=None): """ Downsample a 2-D grid to a lower resolution by aggregating original grid cells. Parameters ---------- src : numpy.ndarray or dask.array.Array The source array to resample w : int New grid width h : int New grid height ds_method : str (optional) Grid cell aggregation method for a possible downsampling (one of the *DS_* constants). fill_value : scalar (optional) If ``None``, it is taken from **src** if it is a masked array, otherwise from *out* if it is a masked array, otherwise numpy's default value is used. mode_rank : scalar (optional) The rank of the frequency determined by the *ds_method* ``DS_MODE``. One (the default) means most frequent value, two means second most frequent value, and so forth. out : numpy.ndarray (optional) Alternate output array in which to place the result. The default is *None*; if provided, it must have the same shape as the expected output. Returns ------- downsampled : numpy.ndarray or dask.array.Array An downsampled version of the *src* array. """ if method == DS_MODE and mode_rank < 1: raise ValueError('mode_rank must be >= 1') out = _get_out(out, src, (h, w)) if out is None: return src mask, use_mask = _get_mask(src) fill_value = _get_fill_value(fill_value, src, out) if method not in DOWNSAMPLING_METHODS: raise ValueError('invalid downsampling method') downsampling_method = DOWNSAMPLING_METHODS[method] downsampled = downsampling_method( src, mask, use_mask, method, fill_value, mode_rank, (0, 0), (0, 0), out) return _mask_or_not(downsampled, src, fill_value) def _get_out(out, src, shape): if out is None: return np.zeros(shape, dtype=src.dtype) else: if out.shape != shape: raise ValueError("'shape' and 'out' are incompatible") if out.shape == src.shape: return None return out def _get_mask(src): if isinstance(src, np.ma.MaskedArray): mask = np.ma.getmask(src) if mask is not np.ma.nomask: return mask, True return _NOMASK2D, False def _mask_or_not(out, src, fill_value): if isinstance(src, np.ma.MaskedArray): if not isinstance(out, np.ma.MaskedArray): if np.isfinite(fill_value): masked = np.ma.masked_equal(out, fill_value, copy=False) else: masked = np.ma.masked_invalid(out, copy=False) masked.set_fill_value(fill_value) return masked return out def _get_fill_value(fill_value, src, out): if fill_value is None: if isinstance(src, np.ma.MaskedArray): fill_value = src.fill_value elif isinstance(out, np.ma.MaskedArray): fill_value = out.fill_value else: # use numpy's default fill_value fill_value = np.ma.array([0], mask=[False], dtype=src.dtype).fill_value return fill_value @ngjit def _get_dimensions(src, out): src_w = src.shape[-1] src_h = src.shape[-2] out_w = out.shape[-1] out_h = out.shape[-2] return src_w, src_h, out_w, out_h def _resample_2d(src, mask, use_mask, ds_method, us_method, fill_value, mode_rank, x_offset, y_offset, out): src_w, src_h, out_w, out_h = _get_dimensions(src, out) x0_off, x1_off = x_offset y0_off, y1_off = y_offset src_wo = (src_w - x0_off - x1_off) src_ho = (src_h - y0_off - y1_off) if us_method not in UPSAMPLING_METHODS: raise ValueError('invalid upsampling method') elif ds_method not in DOWNSAMPLING_METHODS: raise ValueError('invalid downsampling method') downsampling_method = DOWNSAMPLING_METHODS[ds_method] upsampling_method = UPSAMPLING_METHODS[us_method] if src_h == 0 or src_w == 0 or out_h == 0 or out_w == 0: return np.zeros((out_h, out_w), dtype=src.dtype) elif out_w < src_wo and out_h < src_ho: return downsampling_method(src, mask, use_mask, ds_method, fill_value, mode_rank, x_offset, y_offset, out) elif out_w < src_wo: if out_h > src_ho: temp = np.zeros((src_h, out_w), dtype=src.dtype) temp = downsampling_method(src, mask, use_mask, ds_method, fill_value, mode_rank, x_offset, y_offset, temp) # todo - write test & fix: must use mask=np.ma.getmaskarray(temp) here if use_mask==True return upsampling_method(temp, mask, use_mask, fill_value, x_offset, y_offset, out) else: return downsampling_method(src, mask, use_mask, ds_method, fill_value, mode_rank, x_offset, y_offset, out) elif out_h < src_ho: if out_w > src_wo: temp = np.zeros((out_h, src_w), dtype=src.dtype) temp = downsampling_method(src, mask, use_mask, ds_method, fill_value, mode_rank, x_offset, y_offset, temp) # todo - write test & fix: must use mask=np.ma.getmaskarray(temp) here if use_mask==True return upsampling_method(temp, mask, use_mask, fill_value, x_offset, y_offset, out) else: return downsampling_method(src, mask, use_mask, ds_method, fill_value, mode_rank, x_offset, y_offset, out) elif out_w > src_wo or out_h > src_ho: return upsampling_method(src, mask, use_mask, fill_value, x_offset, y_offset, out) return src @ngjit_parallel def _upsample_2d_nearest(src, mask, use_mask, fill_value, x_offset, y_offset, out): src_w, src_h, out_w, out_h = _get_dimensions(src, out) x0_off, x1_off = x_offset y0_off, y1_off = y_offset src_w = (src_w - x0_off - x1_off) src_h = (src_h - y0_off - y1_off) if src_w == out_w and src_h == out_h: return src if out_w < src_w or out_h < src_h: raise ValueError("invalid target size") scale_x = src_w / out_w scale_y = src_h / out_h for out_y in prange(out_h): src_y = int((scale_y * out_y) + y0_off) for out_x in range(out_w): src_x = int((scale_x * out_x) + x0_off) value = src[src_y, src_x] if np.isfinite(value) and not (use_mask and mask[src_y, src_x]): out[out_y, out_x] = value else: out[out_y, out_x] = fill_value return out @ngjit_parallel def _upsample_2d_linear(src, mask, use_mask, fill_value, x_offset, y_offset, out): src_w, src_h, out_w, out_h = _get_dimensions(src, out) x0_off, x1_off = x_offset y0_off, y1_off = y_offset src_wo = (src_w - x0_off - x1_off) src_ho = (src_h - y0_off - y1_off) if src_wo == out_w and src_ho == out_h: return src if out_w < src_w or out_h < src_h: raise ValueError("invalid target size") scale_x = (src_wo - 1.0) / ((out_w - 1.0) if out_w > 1 else 1.0) scale_y = (src_ho - 1.0) / ((out_h - 1.0) if out_h > 1 else 1.0) for out_y in prange(out_h): src_yf = (scale_y * out_y) + y0_off src_y0 = int(src_yf) wy = src_yf - src_y0 src_y1 = src_y0 + 1 if src_y1 >= src_h: src_y1 = src_y0 for out_x in range(out_w): src_xf = (scale_x * out_x) + x0_off src_x0 = int(src_xf) wx = src_xf - src_x0 src_x1 = src_x0 + 1 if src_x1 >= src_w: src_x1 = src_x0 v00 = src[src_y0, src_x0] v01 = src[src_y0, src_x1] v10 = src[src_y1, src_x0] v11 = src[src_y1, src_x1] if use_mask: v00_ok = np.isfinite(v00) and not mask[src_y0, src_x0] v01_ok = np.isfinite(v01) and not mask[src_y0, src_x1] v10_ok = np.isfinite(v10) and not mask[src_y1, src_x0] v11_ok = np.isfinite(v11) and not mask[src_y1, src_x1] else: v00_ok = np.isfinite(v00) v01_ok = np.isfinite(v01) v10_ok = np.isfinite(v10) v11_ok = np.isfinite(v11) if v00_ok and v01_ok and v10_ok and v11_ok: ok = True v0 = v00 + wx * (v01 - v00) v1 = v10 + wx * (v11 - v10) value = v0 + wy * (v1 - v0) elif wx < 0.5: # NEAREST according to weight if wy < 0.5: ok = v00_ok value = v00 else: ok = v10_ok value = v10 else: # NEAREST according to weight if wy < 0.5: ok = v01_ok value = v01 else: ok = v11_ok value = v11 if ok: out[out_y, out_x] = value else: out[out_y, out_x] = fill_value return out UPSAMPLING_METHODS = {US_LINEAR: _upsample_2d_linear, US_NEAREST: _upsample_2d_nearest} @ngjit_parallel def _downsample_2d_first_last(src, mask, use_mask, method, fill_value, mode_rank, x_offset, y_offset, out): src_w, src_h, out_w, out_h = _get_dimensions(src, out) if src_w == out_w and src_h == out_h: return src if out_w > src_w or out_h > src_h: raise ValueError("invalid target size") x0_off, x1_off = x_offset y0_off, y1_off = y_offset scale_x = (src_w - x0_off - x1_off) / out_w scale_y = (src_h - y0_off - y1_off) / out_h for out_y in prange(out_h): src_yf0 = (scale_y * out_y) + y0_off src_yf1 = src_yf0 + scale_y src_y0 = int(src_yf0) src_y1 = int(src_yf1) wy1 = src_yf1 - src_y1 if wy1 < _EPS and src_y1 > src_y0: src_y1 -= 1 for out_x in range(out_w): src_xf0 = (scale_x * out_x) + x0_off src_xf1 = src_xf0 + scale_x src_x0 = int(src_xf0) src_x1 = int(src_xf1) wx1 = src_xf1 - src_x1 if wx1 < _EPS and src_x1 > src_x0: src_x1 -= 1 done = False value = fill_value for src_y in range(src_y0, src_y1 + 1): for src_x in range(src_x0, src_x1 + 1): v = src[src_y, src_x] if np.isfinite(v) and not (use_mask and mask[src_y, src_x]): value = v if method == DS_FIRST: done = True break if done: break out[out_y, out_x] = value return out @ngjit_parallel def _downsample_2d_min_max(src, mask, use_mask, method, fill_value, mode_rank, x_offset, y_offset, out): src_w, src_h, out_w, out_h = _get_dimensions(src, out) if src_w == out_w and src_h == out_h: return src if out_w > src_w or out_h > src_h: raise ValueError("invalid target size") x0_off, x1_off = x_offset y0_off, y1_off = y_offset scale_x = (src_w - x0_off - x1_off) / out_w scale_y = (src_h - y0_off - y1_off) / out_h for out_y in prange(out_h): src_yf0 = (scale_y * out_y) + y0_off src_yf1 = src_yf0 + scale_y src_y0 = int(src_yf0) src_y1 = int(src_yf1) wy1 = src_yf1 - src_y1 if wy1 < _EPS and src_y1 > src_y0: src_y1 -= 1 for out_x in range(out_w): src_xf0 = (scale_x * out_x) + x0_off src_xf1 = src_xf0 + scale_x src_x0 = int(src_xf0) src_x1 = int(src_xf1) wx1 = src_xf1 - src_x1 if wx1 < _EPS and src_x1 > src_x0: src_x1 -= 1 if method == DS_MIN: value = np.inf else: value = -np.inf for src_y in range(src_y0, src_y1 + 1): for src_x in range(src_x0, src_x1 + 1): v = src[src_y, src_x] if np.isfinite(v) and not (use_mask and mask[src_y, src_x]): if method == DS_MIN: if v < value: value = v else: if v > value: value = v if np.isfinite(value): out[out_y, out_x] = value else: out[out_y, out_x] = fill_value return out @ngjit_parallel def _downsample_2d_mode(src, mask, use_mask, method, fill_value, mode_rank, x_offset, y_offset, out): src_w, src_h, out_w, out_h = _get_dimensions(src, out) if src_w == out_w and src_h == out_h: return src if out_w > src_w or out_h > src_h: raise ValueError("invalid target size") x0_off, x1_off = x_offset y0_off, y1_off = y_offset scale_x = (src_w - x0_off - x1_off) / out_w scale_y = (src_h - y0_off - y1_off) / out_h max_value_count = ceil(scale_x + 1) * ceil(scale_y + 1) if mode_rank >= max_value_count: raise ValueError("requested mode_rank too large for max_value_count being collected") for out_y in prange(out_h): src_yf0 = (scale_y * out_y) + y0_off src_yf1 = src_yf0 + scale_y src_y0 = int(src_yf0) src_y1 = int(src_yf1) wy0 = 1.0 - (src_yf0 - src_y0) wy1 = src_yf1 - src_y1 if wy1 < _EPS: wy1 = 1.0 if src_y1 > src_y0: src_y1 -= 1 for out_x in range(out_w): values = np.zeros((max_value_count,), dtype=src.dtype) frequencies = np.zeros((max_value_count,), dtype=np.uint32) src_xf0 = (scale_x * out_x) + x0_off src_xf1 = src_xf0 + scale_x src_x0 = int(src_xf0) src_x1 = int(src_xf1) wx0 = 1.0 - (src_xf0 - src_x0) wx1 = src_xf1 - src_x1 if wx1 < _EPS: wx1 = 1.0 if src_x1 > src_x0: src_x1 -= 1 value_count = 0 for src_y in range(src_y0, src_y1 + 1): wy = wy0 if (src_y == src_y0) else wy1 if (src_y == src_y1) else 1.0 for src_x in range(src_x0, src_x1 + 1): wx = wx0 if (src_x == src_x0) else wx1 if (src_x == src_x1) else 1.0 v = src[src_y, src_x] if np.isfinite(v) and not (use_mask and mask[src_y, src_x]): w = wx * wy found = False for i in range(value_count): if v == values[i]: frequencies[i] += w found = True break if not found: values[value_count] = v frequencies[value_count] = w value_count += 1 w_max = -1. value = fill_value if mode_rank == 1: for i in range(value_count): w = frequencies[i] if w > w_max: w_max = w value = values[i] elif mode_rank <= max_value_count: max_frequencies = np.full(mode_rank, -1.0, dtype=np.float64) indices = np.zeros(mode_rank, dtype=np.int64) for i in range(value_count): w = frequencies[i] for j in range(mode_rank): if w > max_frequencies[j]: max_frequencies[j] = w indices[j] = i break value = values[indices[mode_rank - 1]] out[out_y, out_x] = value return out @ngjit_parallel def _downsample_2d_mean(src, mask, use_mask, method, fill_value, mode_rank, x_offset, y_offset, out): src_w, src_h, out_w, out_h = _get_dimensions(src, out) if src_w == out_w and src_h == out_h: return src if out_w > src_w or out_h > src_h: raise ValueError("invalid target size") x0_off, x1_off = x_offset y0_off, y1_off = y_offset scale_x = (src_w - x0_off - x1_off) / out_w scale_y = (src_h - y0_off - y1_off) / out_h for out_y in prange(out_h): src_yf0 = (scale_y * out_y) + y0_off src_yf1 = (src_yf0 + scale_y) src_y0 = int(src_yf0) src_y1 = int(src_yf1) wy0 = 1.0 - (src_yf0 - src_y0) wy1 = src_yf1 - src_y1 if wy1 < _EPS: wy1 = 1.0 if src_y1 > src_y0: src_y1 -= 1 for out_x in range(out_w): src_xf0 = (scale_x * out_x) + x0_off src_xf1 = src_xf0 + scale_x src_x0 = int(src_xf0) src_x1 = int(src_xf1) wx0 = 1.0 - (src_xf0 - src_x0) wx1 = src_xf1 - src_x1 if wx1 < _EPS: wx1 = 1.0 if src_x1 > src_x0: src_x1 -= 1 v_sum = 0.0 w_sum = 0.0 for src_y in range(src_y0, src_y1 + 1): wy = wy0 if (src_y == src_y0) else wy1 if (src_y == src_y1) else 1.0 for src_x in range(src_x0, src_x1 + 1): wx = wx0 if (src_x == src_x0) else wx1 if (src_x == src_x1) else 1.0 v = src[src_y, src_x] if np.isfinite(v) and not (use_mask and mask[src_y, src_x]): w = wx * wy v_sum += w * v w_sum += w if w_sum < _EPS: out[out_y, out_x] = fill_value else: out[out_y, out_x] = v_sum / w_sum return out @ngjit_parallel def _downsample_2d_std_var(src, mask, use_mask, method, fill_value, mode_rank, x_offset, y_offset, out): src_w, src_h, out_w, out_h = _get_dimensions(src, out) if src_w == out_w and src_h == out_h: return src if out_w > src_w or out_h > src_h: raise ValueError("invalid target size") x0_off, x1_off = x_offset y0_off, y1_off = y_offset scale_x = (src_w - x0_off - x1_off) / out_w scale_y = (src_h - y0_off - y1_off) / out_h for out_y in prange(out_h): src_yf0 = (scale_y * out_y) + y0_off src_yf1 = src_yf0 + scale_y src_y0 = int(src_yf0) src_y1 = int(src_yf1) wy0 = 1.0 - (src_yf0 - src_y0) wy1 = src_yf1 - src_y1 if wy1 < _EPS: wy1 = 1.0 if src_y1 > src_y0: src_y1 -= 1 for out_x in range(out_w): src_xf0 = (scale_x * out_x) + x0_off src_xf1 = src_xf0 + scale_x src_x0 = int(src_xf0) src_x1 = int(src_xf1) wx0 = 1.0 - (src_xf0 - src_x0) wx1 = src_xf1 - src_x1 if wx1 < _EPS: wx1 = 1.0 if src_x1 > src_x0: src_x1 -= 1 v_sum = 0.0 w_sum = 0.0 wv_sum = 0.0 wvv_sum = 0.0 for src_y in range(src_y0, src_y1 + 1): wy = wy0 if (src_y == src_y0) else wy1 if (src_y == src_y1) else 1.0 for src_x in range(src_x0, src_x1 + 1): wx = wx0 if (src_x == src_x0) else wx1 if (src_x == src_x1) else 1.0 v = src[src_y, src_x] if np.isfinite(v) and not (use_mask and mask[src_y, src_x]): w = wx * wy v_sum += v w_sum += w wv_sum += w * v wvv_sum += w * v * v if w_sum < _EPS: out[out_y, out_x] = fill_value else: out[out_y, out_x] = (wvv_sum * w_sum - wv_sum * wv_sum) / w_sum / w_sum if method == DS_STD: out = np.sqrt(out) return out DOWNSAMPLING_METHODS = {DS_MEAN: _downsample_2d_mean, DS_FIRST: _downsample_2d_first_last, DS_LAST: _downsample_2d_first_last, DS_MIN: _downsample_2d_min_max, DS_MAX: _downsample_2d_min_max, DS_MODE: _downsample_2d_mode, DS_STD: _downsample_2d_std_var, DS_VAR: _downsample_2d_std_var} def infer_interval_breaks(coord, axis=0): """ >>> infer_interval_breaks(np.arange(5)) array([-0.5, 0.5, 1.5, 2.5, 3.5, 4.5]) >>> infer_interval_breaks([[0, 1], [3, 4]], axis=1) array([[-0.5, 0.5, 1.5], [ 2.5, 3.5, 4.5]]) """ if cupy and isinstance(coord, cupy.ndarray): # leave cupy array as-is pass else: coord = np.asarray(coord) if sys.version_info.major == 2 and len(coord) and isinstance(coord[0], (dt.datetime, dt.date)): # np.diff does not work on datetimes in python 2 coord = coord.astype('datetime64') if len(coord) == 0: return np.array([], dtype=coord.dtype) deltas = 0.5 * np.diff(coord, axis=axis) first = np.take(coord, [0], axis=axis) - np.take(deltas, [0], axis=axis) last = np.take(coord, [-1], axis=axis) + np.take(deltas, [-1], axis=axis) trim_last = tuple(slice(None, -1) if n == axis else slice(None) for n in range(coord.ndim)) return np.concatenate([first, coord[trim_last] + deltas, last], axis=axis)