from __future__ import annotations import asyncio import logging from collections import defaultdict from timeit import default_timer from tlz import groupby, valmap from dask.base import tokenize from dask.utils import stringify from ..metrics import time from ..utils import key_split from .plugin import SchedulerPlugin logger = logging.getLogger(__name__) def dependent_keys(tasks, complete=False): """ All keys that need to compute for these keys to finish. If *complete* is false, omit tasks that are busy processing or have finished executing. """ out = set() errors = set() stack = list(tasks) while stack: ts = stack.pop() key = ts.key if key in out: continue if not complete and ts.who_has: continue if ts.exception is not None: errors.add(key) if not complete: continue out.add(key) stack.extend(ts.dependencies) return out, errors class Progress(SchedulerPlugin): """Tracks progress of a set of keys or futures On creation we provide a set of keys or futures that interest us as well as a scheduler. We traverse through the scheduler's dependencies to find all relevant keys on which our keys depend. We then plug into the scheduler to learn when our keys become available in memory at which point we record their completion. State ----- keys: set Set of keys that are not yet computed all_keys: set Set of all keys that we track This class performs no visualization. However it is used by other classes, notably TextProgressBar and ProgressWidget, which do perform visualization. """ def __init__(self, keys, scheduler, minimum=0, dt=0.1, complete=False, name=None): self.name = name or f"progress-{tokenize(keys, minimum, dt, complete)}" self.keys = {k.key if hasattr(k, "key") else k for k in keys} self.keys = {stringify(k) for k in self.keys} self.scheduler = scheduler self.complete = complete self._minimum = minimum self._dt = dt self.last_duration = 0 self._start_time = default_timer() self._running = False self.status = None self.extra = {} async def setup(self): keys = self.keys while not keys.issubset(self.scheduler.tasks): await asyncio.sleep(0.05) tasks = [self.scheduler.tasks[k] for k in keys] self.keys = None self.scheduler.add_plugin(self) # subtle race condition here self.all_keys, errors = dependent_keys(tasks, complete=self.complete) if not self.complete: self.keys = self.all_keys.copy() else: self.keys, _ = dependent_keys(tasks, complete=False) self.all_keys.update(keys) self.keys |= errors & self.all_keys if not self.keys: self.stop(exception=None, key=None) logger.debug("Set up Progress keys") for k in errors: self.transition(k, None, "erred", exception=True) def transition(self, key, start, finish, *args, **kwargs): if key in self.keys and start == "processing" and finish == "memory": logger.debug("Progress sees key %s", key) self.keys.remove(key) if not self.keys: self.stop() if key in self.all_keys and finish == "erred": logger.debug("Progress sees task erred") self.stop(exception=kwargs["exception"], key=key) if key in self.keys and finish == "forgotten": logger.debug("A task was cancelled (%s), stopping progress", key) self.stop(exception=True, key=key) def restart(self, scheduler): self.stop() def stop(self, exception=None, key=None): if self.name in self.scheduler.plugins: self.scheduler.remove_plugin(name=self.name) if exception: self.status = "error" self.extra.update( {"exception": self.scheduler.tasks[key].exception, "key": key} ) else: self.status = "finished" logger.debug("Remove Progress plugin") class MultiProgress(Progress): """Progress variant that keeps track of different groups of keys See Progress for most details. This only adds a function ``func=`` that splits keys. This defaults to ``key_split`` which aligns with naming conventions chosen in the dask project (tuples, hyphens, etc..) State ----- keys: dict Maps group name to set of not-yet-complete keys for that group all_keys: dict Maps group name to set of all keys for that group Examples -------- >>> split = lambda s: s.split('-')[0] >>> p = MultiProgress(['y-2'], func=split) # doctest: +SKIP >>> p.keys # doctest: +SKIP {'x': {'x-1', 'x-2', 'x-3'}, 'y': {'y-1', 'y-2'}} """ def __init__( self, keys, scheduler=None, func=key_split, minimum=0, dt=0.1, complete=False ): self.func = func name = f"multi-progress-{tokenize(keys, func, minimum, dt, complete)}" super().__init__( keys, scheduler, minimum=minimum, dt=dt, complete=complete, name=name ) async def setup(self): keys = self.keys while not keys.issubset(self.scheduler.tasks): await asyncio.sleep(0.05) tasks = [self.scheduler.tasks[k] for k in keys] self.keys = None self.scheduler.add_plugin(self) # subtle race condition here self.all_keys, errors = dependent_keys(tasks, complete=self.complete) if not self.complete: self.keys = self.all_keys.copy() else: self.keys, _ = dependent_keys(tasks, complete=False) self.all_keys.update(keys) self.keys |= errors & self.all_keys if not self.keys: self.stop(exception=None, key=None) # Group keys by func name self.keys = valmap(set, groupby(self.func, self.keys)) self.all_keys = valmap(set, groupby(self.func, self.all_keys)) for k in self.all_keys: if k not in self.keys: self.keys[k] = set() for k in errors: self.transition(k, None, "erred", exception=True) logger.debug("Set up Progress keys") def transition(self, key, start, finish, *args, **kwargs): if start == "processing" and finish == "memory": s = self.keys.get(self.func(key), None) if s and key in s: s.remove(key) if not self.keys or not any(self.keys.values()): self.stop() if finish == "erred": logger.debug("Progress sees task erred") k = self.func(key) if k in self.all_keys and key in self.all_keys[k]: self.stop(exception=kwargs.get("exception"), key=key) if finish == "forgotten": k = self.func(key) if k in self.all_keys and key in self.all_keys[k]: logger.debug("A task was cancelled (%s), stopping progress", key) self.stop(exception=True) def format_time(t): """Format seconds into a human readable form. >>> format_time(10.4) '10.4s' >>> format_time(1000.4) '16min 40.4s' >>> format_time(100000.4) '27hr 46min 40.4s' """ m, s = divmod(t, 60) h, m = divmod(m, 60) if h: return f"{h:2.0f}hr {m:2.0f}min {s:4.1f}s" elif m: return f"{m:2.0f}min {s:4.1f}s" else: return f"{s:4.1f}s" class AllProgress(SchedulerPlugin): """Keep track of all keys, grouped by key_split""" name = "all-progress" def __init__(self, scheduler): self.all = defaultdict(set) self.nbytes = defaultdict(lambda: 0) self.state = defaultdict(lambda: defaultdict(set)) self.scheduler = scheduler for ts in self.scheduler.tasks.values(): key = ts.key prefix = ts.prefix.name self.all[prefix].add(key) self.state[ts.state][prefix].add(key) if ts.nbytes >= 0: self.nbytes[prefix] += ts.nbytes scheduler.add_plugin(self) def transition(self, key, start, finish, *args, **kwargs): ts = self.scheduler.tasks[key] prefix = ts.prefix.name self.all[prefix].add(key) try: self.state[start][prefix].remove(key) except KeyError: # TODO: remove me once we have a new or clean state pass if start == "memory" and ts.nbytes >= 0: # XXX why not respect DEFAULT_DATA_SIZE? self.nbytes[prefix] -= ts.nbytes if finish == "memory" and ts.nbytes >= 0: self.nbytes[prefix] += ts.nbytes if finish != "forgotten": self.state[finish][prefix].add(key) else: s = self.all[prefix] s.remove(key) if not s: del self.all[prefix] self.nbytes.pop(prefix, None) for v in self.state.values(): v.pop(prefix, None) def restart(self, scheduler): self.all.clear() self.state.clear() class GroupTiming(SchedulerPlugin): """Keep track of high-level timing information for task group progress""" name = "group-timing" def __init__(self, scheduler): self.scheduler = scheduler # Time bin size (in seconds). TODO: make this configurable? self.dt = 1.0 # Initialize our data structures. self._init() def _init(self): """Shared initializatoin code between __init__ and restart""" now = time() # Timestamps for tracking compute durations by task group. # Start with length 2 so that we always can compute a valid dt later. self.time: list[float] = [now] * 2 # The amount of compute since the last timestamp self.compute: dict[str, list[float]] = {} # The number of threads at the time self.nthreads: list[float] = [self.scheduler.total_nthreads] * 2 def transition(self, key, start, finish, *args, **kwargs): # We are mostly interested in when tasks complete for now, so just look # for when processing transitions to memory. Later we could also extend # this if we can come up with useful visual channels to show it in. if start == "processing" and finish == "memory": startstops = kwargs.get("startstops") if not startstops: logger.warning( f"Task {key} finished processing, but timing information seems to " "be missing" ) return # Possibly extend the timeseries if another dt has passed now = time() self.time[-1] = now while self.time[-1] - self.time[-2] > self.dt: self.time[-1] = self.time[-2] + self.dt self.time.append(now) self.nthreads.append(self.scheduler.total_nthreads) for g in self.compute.values(): g.append(0.0) # Get the task task = self.scheduler.tasks[key] group = task.group # If the group is new, add it to the timeseries as if it has been # here the whole time if group.name not in self.compute: self.compute[group.name] = [0.0] * len(self.time) for startstop in startstops: if startstop["action"] != "compute": continue stop = startstop["stop"] start = startstop["start"] idx = len(self.time) - 1 # If the stop time is after the most recent bin, # roll back the current index. Not clear how often this happens. while idx > 0 and self.time[idx - 1] > stop: idx -= 1 # Allocate the timing information of the task to the time bins. while idx > 0 and stop > start: delta = stop - max(self.time[idx - 1], start) self.compute[group.name][idx] += delta stop -= delta idx -= 1 def restart(self, scheduler): self._init()