import keras from .serialize import dask_deserialize, dask_serialize, deserialize, serialize @dask_serialize.register(keras.Model) def serialize_keras_model(model): import keras if keras.__version__ < "1.2.0": raise ImportError( "Need Keras >= 1.2.0. Try python -m pip install keras --upgrade --no-deps" ) header = model._updated_config() weights = model.get_weights() headers, frames = list(zip(*map(serialize, weights))) header["headers"] = headers header["nframes"] = [len(L) for L in frames] frames = [frame for L in frames for frame in L] return header, frames @dask_deserialize.register(keras.Model) def deserialize_keras_model(header, frames): from keras.models import model_from_config n = 0 weights = [] for head, length in zip(header["headers"], header["nframes"]): x = deserialize(head, frames[n : n + length]) weights.append(x) n += length model = model_from_config(header) model.set_weights(weights) return model