#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2011 Radim Rehurek # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """Math helper functions.""" from __future__ import with_statement import logging import math from gensim import utils import numpy as np import scipy.sparse from scipy.stats import entropy import scipy.linalg from scipy.linalg.lapack import get_lapack_funcs from scipy.linalg.special_matrices import triu from scipy.special import psi # gamma function utils logger = logging.getLogger(__name__) def blas(name, ndarray): """Helper for getting the appropriate BLAS function, using :func:`scipy.linalg.get_blas_funcs`. Parameters ---------- name : str Name(s) of BLAS functions, without the type prefix. ndarray : numpy.ndarray Arrays can be given to determine optimal prefix of BLAS routines. Returns ------- object BLAS function for the needed operation on the given data type. """ return scipy.linalg.get_blas_funcs((name,), (ndarray,))[0] def argsort(x, topn=None, reverse=False): """Efficiently calculate indices of the `topn` smallest elements in array `x`. Parameters ---------- x : array_like Array to get the smallest element indices from. topn : int, optional Number of indices of the smallest (greatest) elements to be returned. If not given, indices of all elements will be returned in ascending (descending) order. reverse : bool, optional Return the `topn` greatest elements in descending order, instead of smallest elements in ascending order? Returns ------- numpy.ndarray Array of `topn` indices that sort the array in the requested order. """ x = np.asarray(x) # unify code path for when `x` is not a np array (list, tuple...) if topn is None: topn = x.size if topn <= 0: return [] if reverse: x = -x if topn >= x.size or not hasattr(np, 'argpartition'): return np.argsort(x)[:topn] # np >= 1.8 has a fast partial argsort, use that! most_extreme = np.argpartition(x, topn)[:topn] return most_extreme.take(np.argsort(x.take(most_extreme))) # resort topn into order def corpus2csc(corpus, num_terms=None, dtype=np.float64, num_docs=None, num_nnz=None, printprogress=0): """Convert a streamed corpus in bag-of-words format into a sparse matrix `scipy.sparse.csc_matrix`, with documents as columns. Notes ----- If the number of terms, documents and non-zero elements is known, you can pass them here as parameters and a (much) more memory efficient code path will be taken. Parameters ---------- corpus : iterable of iterable of (int, number) Input corpus in BoW format num_terms : int, optional Number of terms in `corpus`. If provided, the `corpus.num_terms` attribute (if any) will be ignored. dtype : data-type, optional Data type of output CSC matrix. num_docs : int, optional Number of documents in `corpus`. If provided, the `corpus.num_docs` attribute (in any) will be ignored. num_nnz : int, optional Number of non-zero elements in `corpus`. If provided, the `corpus.num_nnz` attribute (if any) will be ignored. printprogress : int, optional Log a progress message at INFO level once every `printprogress` documents. 0 to turn off progress logging. Returns ------- scipy.sparse.csc_matrix `corpus` converted into a sparse CSC matrix. See Also -------- :class:`~gensim.matutils.Sparse2Corpus` Convert sparse format to Gensim corpus format. """ try: # if the input corpus has the `num_nnz`, `num_docs` and `num_terms` attributes # (as is the case with MmCorpus for example), we can use a more efficient code path if num_terms is None: num_terms = corpus.num_terms if num_docs is None: num_docs = corpus.num_docs if num_nnz is None: num_nnz = corpus.num_nnz except AttributeError: pass # not a MmCorpus... if printprogress: logger.info("creating sparse matrix from corpus") if num_terms is not None and num_docs is not None and num_nnz is not None: # faster and much more memory-friendly version of creating the sparse csc posnow, indptr = 0, [0] indices = np.empty((num_nnz,), dtype=np.int32) # HACK assume feature ids fit in 32bit integer data = np.empty((num_nnz,), dtype=dtype) for docno, doc in enumerate(corpus): if printprogress and docno % printprogress == 0: logger.info("PROGRESS: at document #%i/%i", docno, num_docs) posnext = posnow + len(doc) # zip(*doc) transforms doc to (token_indices, token_counts] indices[posnow: posnext], data[posnow: posnext] = zip(*doc) if doc else ([], []) indptr.append(posnext) posnow = posnext assert posnow == num_nnz, "mismatch between supplied and computed number of non-zeros" result = scipy.sparse.csc_matrix((data, indices, indptr), shape=(num_terms, num_docs), dtype=dtype) else: # slower version; determine the sparse matrix parameters during iteration num_nnz, data, indices, indptr = 0, [], [], [0] for docno, doc in enumerate(corpus): if printprogress and docno % printprogress == 0: logger.info("PROGRESS: at document #%i", docno) # zip(*doc) transforms doc to (token_indices, token_counts] doc_indices, doc_data = zip(*doc) if doc else ([], []) indices.extend(doc_indices) data.extend(doc_data) num_nnz += len(doc) indptr.append(num_nnz) if num_terms is None: num_terms = max(indices) + 1 if indices else 0 num_docs = len(indptr) - 1 # now num_docs, num_terms and num_nnz contain the correct values data = np.asarray(data, dtype=dtype) indices = np.asarray(indices) result = scipy.sparse.csc_matrix((data, indices, indptr), shape=(num_terms, num_docs), dtype=dtype) return result def pad(mat, padrow, padcol): """Add additional rows/columns to `mat`. The new rows/columns will be initialized with zeros. Parameters ---------- mat : numpy.ndarray Input 2D matrix padrow : int Number of additional rows padcol : int Number of additional columns Returns ------- numpy.matrixlib.defmatrix.matrix Matrix with needed padding. """ if padrow < 0: padrow = 0 if padcol < 0: padcol = 0 rows, cols = mat.shape return np.block([ [mat, np.zeros((rows, padcol))], [np.zeros((padrow, cols + padcol))], ]) def zeros_aligned(shape, dtype, order='C', align=128): """Get array aligned at `align` byte boundary in memory. Parameters ---------- shape : int or (int, int) Shape of array. dtype : data-type Data type of array. order : {'C', 'F'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. align : int, optional Boundary for alignment in bytes. Returns ------- numpy.ndarray Aligned array. """ nbytes = np.prod(shape, dtype=np.int64) * np.dtype(dtype).itemsize buffer = np.zeros(nbytes + align, dtype=np.uint8) # problematic on win64 ("maximum allowed dimension exceeded") start_index = -buffer.ctypes.data % align return buffer[start_index: start_index + nbytes].view(dtype).reshape(shape, order=order) def ismatrix(m): """Check whether `m` is a 2D `numpy.ndarray` or `scipy.sparse` matrix. Parameters ---------- m : object Object to check. Returns ------- bool Is `m` a 2D `numpy.ndarray` or `scipy.sparse` matrix. """ return isinstance(m, np.ndarray) and m.ndim == 2 or scipy.sparse.issparse(m) def any2sparse(vec, eps=1e-9): """Convert a numpy.ndarray or `scipy.sparse` vector into the Gensim bag-of-words format. Parameters ---------- vec : {`numpy.ndarray`, `scipy.sparse`} Input vector eps : float, optional Value used for threshold, all coordinates less than `eps` will not be presented in result. Returns ------- list of (int, float) Vector in BoW format. """ if isinstance(vec, np.ndarray): return dense2vec(vec, eps) if scipy.sparse.issparse(vec): return scipy2sparse(vec, eps) return [(int(fid), float(fw)) for fid, fw in vec if np.abs(fw) > eps] def scipy2scipy_clipped(matrix, topn, eps=1e-9): """Get the 'topn' elements of the greatest magnitude (absolute value) from a `scipy.sparse` vector or matrix. Parameters ---------- matrix : `scipy.sparse` Input vector or matrix (1D or 2D sparse array). topn : int Number of greatest elements, in absolute value, to return. eps : float Ignored. Returns ------- `scipy.sparse.csr.csr_matrix` Clipped matrix. """ if not scipy.sparse.issparse(matrix): raise ValueError("'%s' is not a scipy sparse vector." % matrix) if topn <= 0: return scipy.sparse.csr_matrix([]) # Return clipped sparse vector if input is a sparse vector. if matrix.shape[0] == 1: # use np.argpartition/argsort and only form tuples that are actually returned. biggest = argsort(abs(matrix.data), topn, reverse=True) indices, data = matrix.indices.take(biggest), matrix.data.take(biggest) return scipy.sparse.csr_matrix((data, indices, [0, len(indices)])) # Return clipped sparse matrix if input is a matrix, processing row by row. else: matrix_indices = [] matrix_data = [] matrix_indptr = [0] # calling abs() on entire matrix once is faster than calling abs() iteratively for each row matrix_abs = abs(matrix) for i in range(matrix.shape[0]): v = matrix.getrow(i) v_abs = matrix_abs.getrow(i) # Sort and clip each row vector first. biggest = argsort(v_abs.data, topn, reverse=True) indices, data = v.indices.take(biggest), v.data.take(biggest) # Store the topn indices and values of each row vector. matrix_data.append(data) matrix_indices.append(indices) matrix_indptr.append(matrix_indptr[-1] + min(len(indices), topn)) matrix_indices = np.concatenate(matrix_indices).ravel() matrix_data = np.concatenate(matrix_data).ravel() # Instantiate and return a sparse csr_matrix which preserves the order of indices/data. return scipy.sparse.csr.csr_matrix( (matrix_data, matrix_indices, matrix_indptr), shape=(matrix.shape[0], np.max(matrix_indices) + 1) ) def scipy2sparse(vec, eps=1e-9): """Convert a scipy.sparse vector into the Gensim bag-of-words format. Parameters ---------- vec : `scipy.sparse` Sparse vector. eps : float, optional Value used for threshold, all coordinates less than `eps` will not be presented in result. Returns ------- list of (int, float) Vector in Gensim bag-of-words format. """ vec = vec.tocsr() assert vec.shape[0] == 1 return [(int(pos), float(val)) for pos, val in zip(vec.indices, vec.data) if np.abs(val) > eps] class Scipy2Corpus: """Convert a sequence of dense/sparse vectors into a streamed Gensim corpus object. See Also -------- :func:`~gensim.matutils.corpus2csc` Convert corpus in Gensim format to `scipy.sparse.csc` matrix. """ def __init__(self, vecs): """ Parameters ---------- vecs : iterable of {`numpy.ndarray`, `scipy.sparse`} Input vectors. """ self.vecs = vecs def __iter__(self): for vec in self.vecs: if isinstance(vec, np.ndarray): yield full2sparse(vec) else: yield scipy2sparse(vec) def __len__(self): return len(self.vecs) def sparse2full(doc, length): """Convert a document in Gensim bag-of-words format into a dense numpy array. Parameters ---------- doc : list of (int, number) Document in BoW format. length : int Vector dimensionality. This cannot be inferred from the BoW, and you must supply it explicitly. This is typically the vocabulary size or number of topics, depending on how you created `doc`. Returns ------- numpy.ndarray Dense numpy vector for `doc`. See Also -------- :func:`~gensim.matutils.full2sparse` Convert dense array to gensim bag-of-words format. """ result = np.zeros(length, dtype=np.float32) # fill with zeroes (default value) # convert indices to int as numpy 1.12 no longer indexes by floats doc = ((int(id_), float(val_)) for (id_, val_) in doc) doc = dict(doc) # overwrite some of the zeroes with explicit values result[list(doc)] = list(doc.values()) return result def full2sparse(vec, eps=1e-9): """Convert a dense numpy array into the Gensim bag-of-words format. Parameters ---------- vec : numpy.ndarray Dense input vector. eps : float Feature weight threshold value. Features with `abs(weight) < eps` are considered sparse and won't be included in the BOW result. Returns ------- list of (int, float) BoW format of `vec`, with near-zero values omitted (sparse vector). See Also -------- :func:`~gensim.matutils.sparse2full` Convert a document in Gensim bag-of-words format into a dense numpy array. """ vec = np.asarray(vec, dtype=float) nnz = np.nonzero(abs(vec) > eps)[0] return list(zip(nnz, vec.take(nnz))) dense2vec = full2sparse def full2sparse_clipped(vec, topn, eps=1e-9): """Like :func:`~gensim.matutils.full2sparse`, but only return the `topn` elements of the greatest magnitude (abs). This is more efficient that sorting a vector and then taking the greatest values, especially where `len(vec) >> topn`. Parameters ---------- vec : numpy.ndarray Input dense vector topn : int Number of greatest (abs) elements that will be presented in result. eps : float Threshold value, if coordinate in `vec` < eps, this will not be presented in result. Returns ------- list of (int, float) Clipped vector in BoW format. See Also -------- :func:`~gensim.matutils.full2sparse` Convert dense array to gensim bag-of-words format. """ # use np.argpartition/argsort and only form tuples that are actually returned. # this is about 40x faster than explicitly forming all 2-tuples to run sort() or heapq.nlargest() on. if topn <= 0: return [] vec = np.asarray(vec, dtype=float) nnz = np.nonzero(abs(vec) > eps)[0] biggest = nnz.take(argsort(abs(vec).take(nnz), topn, reverse=True)) return list(zip(biggest, vec.take(biggest))) def corpus2dense(corpus, num_terms, num_docs=None, dtype=np.float32): """Convert corpus into a dense numpy 2D array, with documents as columns. Parameters ---------- corpus : iterable of iterable of (int, number) Input corpus in the Gensim bag-of-words format. num_terms : int Number of terms in the dictionary. X-axis of the resulting matrix. num_docs : int, optional Number of documents in the corpus. If provided, a slightly more memory-efficient code path is taken. Y-axis of the resulting matrix. dtype : data-type, optional Data type of the output matrix. Returns ------- numpy.ndarray Dense 2D array that presents `corpus`. See Also -------- :class:`~gensim.matutils.Dense2Corpus` Convert dense matrix to Gensim corpus format. """ if num_docs is not None: # we know the number of documents => don't bother column_stacking docno, result = -1, np.empty((num_terms, num_docs), dtype=dtype) for docno, doc in enumerate(corpus): result[:, docno] = sparse2full(doc, num_terms) assert docno + 1 == num_docs else: # The below used to be a generator, but NumPy deprecated generator as of 1.16 with: # """ # FutureWarning: arrays to stack must be passed as a "sequence" type such as list or tuple. # Support for non-sequence iterables such as generators is deprecated as of NumPy 1.16 and will raise an error # in the future. # """ result = np.column_stack([sparse2full(doc, num_terms) for doc in corpus]) return result.astype(dtype) class Dense2Corpus: """Treat dense numpy array as a streamed Gensim corpus in the bag-of-words format. Notes ----- No data copy is made (changes to the underlying matrix imply changes in the streamed corpus). See Also -------- :func:`~gensim.matutils.corpus2dense` Convert Gensim corpus to dense matrix. :class:`~gensim.matutils.Sparse2Corpus` Convert sparse matrix to Gensim corpus format. """ def __init__(self, dense, documents_columns=True): """ Parameters ---------- dense : numpy.ndarray Corpus in dense format. documents_columns : bool, optional Documents in `dense` represented as columns, as opposed to rows? """ if documents_columns: self.dense = dense.T else: self.dense = dense def __iter__(self): """Iterate over the corpus. Yields ------ list of (int, float) Document in BoW format. """ for doc in self.dense: yield full2sparse(doc.flat) def __len__(self): return len(self.dense) class Sparse2Corpus: """Convert a matrix in scipy.sparse format into a streaming Gensim corpus. See Also -------- :func:`~gensim.matutils.corpus2csc` Convert gensim corpus format to `scipy.sparse.csc` matrix :class:`~gensim.matutils.Dense2Corpus` Convert dense matrix to gensim corpus. """ def __init__(self, sparse, documents_columns=True): """ Parameters ---------- sparse : `scipy.sparse` Corpus scipy sparse format documents_columns : bool, optional Documents will be column? """ if documents_columns: self.sparse = sparse.tocsc() else: self.sparse = sparse.tocsr().T # make sure shape[1]=number of docs (needed in len()) def __iter__(self): """ Yields ------ list of (int, float) Document in BoW format. """ for indprev, indnow in zip(self.sparse.indptr, self.sparse.indptr[1:]): yield list(zip(self.sparse.indices[indprev:indnow], self.sparse.data[indprev:indnow])) def __len__(self): return self.sparse.shape[1] def __getitem__(self, document_index): """Retrieve a document vector from the corpus by its index. Parameters ---------- document_index : int Index of document Returns ------- list of (int, number) Document in BoW format. """ indprev = self.sparse.indptr[document_index] indnow = self.sparse.indptr[document_index + 1] return list(zip(self.sparse.indices[indprev:indnow], self.sparse.data[indprev:indnow])) def veclen(vec): """Calculate L2 (euclidean) length of a vector. Parameters ---------- vec : list of (int, number) Input vector in sparse bag-of-words format. Returns ------- float Length of `vec`. """ if len(vec) == 0: return 0.0 length = 1.0 * math.sqrt(sum(val**2 for _, val in vec)) assert length > 0.0, "sparse documents must not contain any explicit zero entries" return length def ret_normalized_vec(vec, length): """Normalize a vector in L2 (Euclidean unit norm). Parameters ---------- vec : list of (int, number) Input vector in BoW format. length : float Length of vector Returns ------- list of (int, number) L2-normalized vector in BoW format. """ if length != 1.0: return [(termid, val / length) for termid, val in vec] else: return list(vec) def ret_log_normalize_vec(vec, axis=1): log_max = 100.0 if len(vec.shape) == 1: max_val = np.max(vec) log_shift = log_max - np.log(len(vec) + 1.0) - max_val tot = np.sum(np.exp(vec + log_shift)) log_norm = np.log(tot) - log_shift vec -= log_norm else: if axis == 1: # independently normalize each sample max_val = np.max(vec, 1) log_shift = log_max - np.log(vec.shape[1] + 1.0) - max_val tot = np.sum(np.exp(vec + log_shift[:, np.newaxis]), 1) log_norm = np.log(tot) - log_shift vec = vec - log_norm[:, np.newaxis] elif axis == 0: # normalize each feature k = ret_log_normalize_vec(vec.T) return k[0].T, k[1] else: raise ValueError("'%s' is not a supported axis" % axis) return vec, log_norm blas_nrm2 = blas('nrm2', np.array([], dtype=float)) blas_scal = blas('scal', np.array([], dtype=float)) def unitvec(vec, norm='l2', return_norm=False): """Scale a vector to unit length. Parameters ---------- vec : {numpy.ndarray, scipy.sparse, list of (int, float)} Input vector in any format norm : {'l1', 'l2', 'unique'}, optional Metric to normalize in. return_norm : bool, optional Return the length of vector `vec`, in addition to the normalized vector itself? Returns ------- numpy.ndarray, scipy.sparse, list of (int, float)} Normalized vector in same format as `vec`. float Length of `vec` before normalization, if `return_norm` is set. Notes ----- Zero-vector will be unchanged. """ supported_norms = ('l1', 'l2', 'unique') if norm not in supported_norms: raise ValueError("'%s' is not a supported norm. Currently supported norms are %s." % (norm, supported_norms)) if scipy.sparse.issparse(vec): vec = vec.tocsr() if norm == 'l1': veclen = np.sum(np.abs(vec.data)) if norm == 'l2': veclen = np.sqrt(np.sum(vec.data ** 2)) if norm == 'unique': veclen = vec.nnz if veclen > 0.0: if np.issubdtype(vec.dtype, np.integer): vec = vec.astype(float) vec /= veclen if return_norm: return vec, veclen else: return vec else: if return_norm: return vec, 1.0 else: return vec if isinstance(vec, np.ndarray): if norm == 'l1': veclen = np.sum(np.abs(vec)) if norm == 'l2': if vec.size == 0: veclen = 0.0 else: veclen = blas_nrm2(vec) if norm == 'unique': veclen = np.count_nonzero(vec) if veclen > 0.0: if np.issubdtype(vec.dtype, np.integer): vec = vec.astype(float) if return_norm: return blas_scal(1.0 / veclen, vec).astype(vec.dtype), veclen else: return blas_scal(1.0 / veclen, vec).astype(vec.dtype) else: if return_norm: return vec, 1.0 else: return vec try: first = next(iter(vec)) # is there at least one element? except StopIteration: if return_norm: return vec, 1.0 else: return vec if isinstance(first, (tuple, list)) and len(first) == 2: # gensim sparse format if norm == 'l1': length = float(sum(abs(val) for _, val in vec)) if norm == 'l2': length = 1.0 * math.sqrt(sum(val ** 2 for _, val in vec)) if norm == 'unique': length = 1.0 * len(vec) assert length > 0.0, "sparse documents must not contain any explicit zero entries" if return_norm: return ret_normalized_vec(vec, length), length else: return ret_normalized_vec(vec, length) else: raise ValueError("unknown input type") def cossim(vec1, vec2): """Get cosine similarity between two sparse vectors. Cosine similarity is a number between `<-1.0, 1.0>`, higher means more similar. Parameters ---------- vec1 : list of (int, float) Vector in BoW format. vec2 : list of (int, float) Vector in BoW format. Returns ------- float Cosine similarity between `vec1` and `vec2`. """ vec1, vec2 = dict(vec1), dict(vec2) if not vec1 or not vec2: return 0.0 vec1len = 1.0 * math.sqrt(sum(val * val for val in vec1.values())) vec2len = 1.0 * math.sqrt(sum(val * val for val in vec2.values())) assert vec1len > 0.0 and vec2len > 0.0, "sparse documents must not contain any explicit zero entries" if len(vec2) < len(vec1): vec1, vec2 = vec2, vec1 # swap references so that we iterate over the shorter vector result = sum(value * vec2.get(index, 0.0) for index, value in vec1.items()) result /= vec1len * vec2len # rescale by vector lengths return result def isbow(vec): """Checks if a vector is in the sparse Gensim bag-of-words format. Parameters ---------- vec : object Object to check. Returns ------- bool Is `vec` in BoW format. """ if scipy.sparse.issparse(vec): vec = vec.todense().tolist() try: id_, val_ = vec[0] # checking first value to see if it is in bag of words format by unpacking int(id_), float(val_) except IndexError: return True # this is to handle the empty input case except (ValueError, TypeError): return False return True def _convert_vec(vec1, vec2, num_features=None): if scipy.sparse.issparse(vec1): vec1 = vec1.toarray() if scipy.sparse.issparse(vec2): vec2 = vec2.toarray() # converted both the vectors to dense in case they were in sparse matrix if isbow(vec1) and isbow(vec2): # if they are in bag of words format we make it dense if num_features is not None: # if not None, make as large as the documents drawing from dense1 = sparse2full(vec1, num_features) dense2 = sparse2full(vec2, num_features) return dense1, dense2 else: max_len = max(len(vec1), len(vec2)) dense1 = sparse2full(vec1, max_len) dense2 = sparse2full(vec2, max_len) return dense1, dense2 else: # this conversion is made because if it is not in bow format, it might be a list within a list after conversion # the scipy implementation of Kullback fails in such a case so we pick up only the nested list. if len(vec1) == 1: vec1 = vec1[0] if len(vec2) == 1: vec2 = vec2[0] return vec1, vec2 def kullback_leibler(vec1, vec2, num_features=None): """Calculate Kullback-Leibler distance between two probability distributions using `scipy.stats.entropy`. Parameters ---------- vec1 : {scipy.sparse, numpy.ndarray, list of (int, float)} Distribution vector. vec2 : {scipy.sparse, numpy.ndarray, list of (int, float)} Distribution vector. num_features : int, optional Number of features in the vectors. Returns ------- float Kullback-Leibler distance between `vec1` and `vec2`. Value in range [0, +∞) where values closer to 0 mean less distance (higher similarity). """ vec1, vec2 = _convert_vec(vec1, vec2, num_features=num_features) return entropy(vec1, vec2) def jensen_shannon(vec1, vec2, num_features=None): """Calculate Jensen-Shannon distance between two probability distributions using `scipy.stats.entropy`. Parameters ---------- vec1 : {scipy.sparse, numpy.ndarray, list of (int, float)} Distribution vector. vec2 : {scipy.sparse, numpy.ndarray, list of (int, float)} Distribution vector. num_features : int, optional Number of features in the vectors. Returns ------- float Jensen-Shannon distance between `vec1` and `vec2`. Notes ----- This is a symmetric and finite "version" of :func:`gensim.matutils.kullback_leibler`. """ vec1, vec2 = _convert_vec(vec1, vec2, num_features=num_features) avg_vec = 0.5 * (vec1 + vec2) return 0.5 * (entropy(vec1, avg_vec) + entropy(vec2, avg_vec)) def hellinger(vec1, vec2): """Calculate Hellinger distance between two probability distributions. Parameters ---------- vec1 : {scipy.sparse, numpy.ndarray, list of (int, float)} Distribution vector. vec2 : {scipy.sparse, numpy.ndarray, list of (int, float)} Distribution vector. Returns ------- float Hellinger distance between `vec1` and `vec2`. Value in range `[0, 1]`, where 0 is min distance (max similarity) and 1 is max distance (min similarity). """ if scipy.sparse.issparse(vec1): vec1 = vec1.toarray() if scipy.sparse.issparse(vec2): vec2 = vec2.toarray() if isbow(vec1) and isbow(vec2): # if it is a BoW format, instead of converting to dense we use dictionaries to calculate appropriate distance vec1, vec2 = dict(vec1), dict(vec2) indices = set(list(vec1.keys()) + list(vec2.keys())) sim = np.sqrt( 0.5 * sum((np.sqrt(vec1.get(index, 0.0)) - np.sqrt(vec2.get(index, 0.0)))**2 for index in indices) ) return sim else: sim = np.sqrt(0.5 * ((np.sqrt(vec1) - np.sqrt(vec2))**2).sum()) return sim def jaccard(vec1, vec2): """Calculate Jaccard distance between two vectors. Parameters ---------- vec1 : {scipy.sparse, numpy.ndarray, list of (int, float)} Distribution vector. vec2 : {scipy.sparse, numpy.ndarray, list of (int, float)} Distribution vector. Returns ------- float Jaccard distance between `vec1` and `vec2`. Value in range `[0, 1]`, where 0 is min distance (max similarity) and 1 is max distance (min similarity). """ # converting from sparse for easier manipulation if scipy.sparse.issparse(vec1): vec1 = vec1.toarray() if scipy.sparse.issparse(vec2): vec2 = vec2.toarray() if isbow(vec1) and isbow(vec2): # if it's in bow format, we use the following definitions: # union = sum of the 'weights' of both the bags # intersection = lowest weight for a particular id; basically the number of common words or items union = sum(weight for id_, weight in vec1) + sum(weight for id_, weight in vec2) vec1, vec2 = dict(vec1), dict(vec2) intersection = 0.0 for feature_id, feature_weight in vec1.items(): intersection += min(feature_weight, vec2.get(feature_id, 0.0)) return 1 - float(intersection) / float(union) else: # if it isn't in bag of words format, we can use sets to calculate intersection and union if isinstance(vec1, np.ndarray): vec1 = vec1.tolist() if isinstance(vec2, np.ndarray): vec2 = vec2.tolist() vec1 = set(vec1) vec2 = set(vec2) intersection = vec1 & vec2 union = vec1 | vec2 return 1 - float(len(intersection)) / float(len(union)) def jaccard_distance(set1, set2): """Calculate Jaccard distance between two sets. Parameters ---------- set1 : set Input set. set2 : set Input set. Returns ------- float Jaccard distance between `set1` and `set2`. Value in range `[0, 1]`, where 0 is min distance (max similarity) and 1 is max distance (min similarity). """ union_cardinality = len(set1 | set2) if union_cardinality == 0: # Both sets are empty return 1. return 1. - float(len(set1 & set2)) / float(union_cardinality) try: # try to load fast, cythonized code if possible from gensim._matutils import logsumexp, mean_absolute_difference, dirichlet_expectation except ImportError: def logsumexp(x): """Log of sum of exponentials. Parameters ---------- x : numpy.ndarray Input 2d matrix. Returns ------- float log of sum of exponentials of elements in `x`. Warnings -------- For performance reasons, doesn't support NaNs or 1d, 3d, etc arrays like :func:`scipy.special.logsumexp`. """ x_max = np.max(x) x = np.log(np.sum(np.exp(x - x_max))) x += x_max return x def mean_absolute_difference(a, b): """Mean absolute difference between two arrays. Parameters ---------- a : numpy.ndarray Input 1d array. b : numpy.ndarray Input 1d array. Returns ------- float mean(abs(a - b)). """ return np.mean(np.abs(a - b)) def dirichlet_expectation(alpha): """Expected value of log(theta) where theta is drawn from a Dirichlet distribution. Parameters ---------- alpha : numpy.ndarray Dirichlet parameter 2d matrix or 1d vector, if 2d - each row is treated as a separate parameter vector. Returns ------- numpy.ndarray Log of expected values, dimension same as `alpha.ndim`. """ if len(alpha.shape) == 1: result = psi(alpha) - psi(np.sum(alpha)) else: result = psi(alpha) - psi(np.sum(alpha, 1))[:, np.newaxis] return result.astype(alpha.dtype, copy=False) # keep the same precision as input def qr_destroy(la): """Get QR decomposition of `la[0]`. Parameters ---------- la : list of numpy.ndarray Run QR decomposition on the first elements of `la`. Must not be empty. Returns ------- (numpy.ndarray, numpy.ndarray) Matrices :math:`Q` and :math:`R`. Notes ----- Using this function is less memory intense than calling `scipy.linalg.qr(la[0])`, because the memory used in `la[0]` is reclaimed earlier. This makes a difference when decomposing very large arrays, where every memory copy counts. Warnings -------- Content of `la` as well as `la[0]` gets destroyed in the process. Again, for memory-effiency reasons. """ a = np.asfortranarray(la[0]) del la[0], la # now `a` is the only reference to the input matrix m, n = a.shape # perform q, r = QR(a); code hacked out of scipy.linalg.qr logger.debug("computing QR of %s dense matrix", str(a.shape)) geqrf, = get_lapack_funcs(('geqrf',), (a,)) qr, tau, work, info = geqrf(a, lwork=-1, overwrite_a=True) qr, tau, work, info = geqrf(a, lwork=work[0], overwrite_a=True) del a # free up mem assert info >= 0 r = triu(qr[:n, :n]) if m < n: # rare case, #features < #topics qr = qr[:, :m] # retains fortran order gorgqr, = get_lapack_funcs(('orgqr',), (qr,)) q, work, info = gorgqr(qr, tau, lwork=-1, overwrite_a=True) q, work, info = gorgqr(qr, tau, lwork=work[0], overwrite_a=True) assert info >= 0, "qr failed" assert q.flags.f_contiguous return q, r class MmWriter: """Store a corpus in `Matrix Market format `_, using :class:`~gensim.corpora.mmcorpus.MmCorpus`. Notes ----- The output is written one document at a time, not the whole matrix at once (unlike e.g. `scipy.io.mmread`). This allows you to write corpora which are larger than the available RAM. The output file is created in a single pass through the input corpus, so that the input can be a once-only stream (generator). To achieve this, a fake MM header is written first, corpus statistics are collected during the pass (shape of the matrix, number of non-zeroes), followed by a seek back to the beginning of the file, rewriting the fake header with the final values. """ HEADER_LINE = b'%%MatrixMarket matrix coordinate real general\n' # the only supported MM format def __init__(self, fname): """ Parameters ---------- fname : str Path to output file. """ self.fname = fname if fname.endswith(".gz") or fname.endswith('.bz2'): raise NotImplementedError("compressed output not supported with MmWriter") self.fout = utils.open(self.fname, 'wb+') # open for both reading and writing self.headers_written = False def write_headers(self, num_docs, num_terms, num_nnz): """Write headers to file. Parameters ---------- num_docs : int Number of documents in corpus. num_terms : int Number of term in corpus. num_nnz : int Number of non-zero elements in corpus. """ self.fout.write(MmWriter.HEADER_LINE) if num_nnz < 0: # we don't know the matrix shape/density yet, so only log a general line logger.info("saving sparse matrix to %s", self.fname) self.fout.write(utils.to_utf8(' ' * 50 + '\n')) # 48 digits must be enough for everybody else: logger.info( "saving sparse %sx%s matrix with %i non-zero entries to %s", num_docs, num_terms, num_nnz, self.fname ) self.fout.write(utils.to_utf8('%s %s %s\n' % (num_docs, num_terms, num_nnz))) self.last_docno = -1 self.headers_written = True def fake_headers(self, num_docs, num_terms, num_nnz): """Write "fake" headers to file, to be rewritten once we've scanned the entire corpus. Parameters ---------- num_docs : int Number of documents in corpus. num_terms : int Number of term in corpus. num_nnz : int Number of non-zero elements in corpus. """ stats = '%i %i %i' % (num_docs, num_terms, num_nnz) if len(stats) > 50: raise ValueError('Invalid stats: matrix too large!') self.fout.seek(len(MmWriter.HEADER_LINE)) self.fout.write(utils.to_utf8(stats)) def write_vector(self, docno, vector): """Write a single sparse vector to the file. Parameters ---------- docno : int Number of document. vector : list of (int, number) Document in BoW format. Returns ------- (int, int) Max word index in vector and len of vector. If vector is empty, return (-1, 0). """ assert self.headers_written, "must write Matrix Market file headers before writing data!" assert self.last_docno < docno, "documents %i and %i not in sequential order!" % (self.last_docno, docno) vector = sorted((i, w) for i, w in vector if abs(w) > 1e-12) # ignore near-zero entries for termid, weight in vector: # write term ids in sorted order # +1 because MM format starts counting from 1 self.fout.write(utils.to_utf8("%i %i %s\n" % (docno + 1, termid + 1, weight))) self.last_docno = docno return (vector[-1][0], len(vector)) if vector else (-1, 0) @staticmethod def write_corpus(fname, corpus, progress_cnt=1000, index=False, num_terms=None, metadata=False): """Save the corpus to disk in `Matrix Market format `_. Parameters ---------- fname : str Filename of the resulting file. corpus : iterable of list of (int, number) Corpus in streamed bag-of-words format. progress_cnt : int, optional Print progress for every `progress_cnt` number of documents. index : bool, optional Return offsets? num_terms : int, optional Number of terms in the corpus. If provided, the `corpus.num_terms` attribute (if any) will be ignored. metadata : bool, optional Generate a metadata file? Returns ------- offsets : {list of int, None} List of offsets (if index=True) or nothing. Notes ----- Documents are processed one at a time, so the whole corpus is allowed to be larger than the available RAM. See Also -------- :func:`gensim.corpora.mmcorpus.MmCorpus.save_corpus` Save corpus to disk. """ mw = MmWriter(fname) # write empty headers to the file (with enough space to be overwritten later) mw.write_headers(-1, -1, -1) # will print 50 spaces followed by newline on the stats line # calculate necessary header info (nnz elements, num terms, num docs) while writing out vectors _num_terms, num_nnz = 0, 0 docno, poslast = -1, -1 offsets = [] if hasattr(corpus, 'metadata'): orig_metadata = corpus.metadata corpus.metadata = metadata if metadata: docno2metadata = {} else: metadata = False for docno, doc in enumerate(corpus): if metadata: bow, data = doc docno2metadata[docno] = data else: bow = doc if docno % progress_cnt == 0: logger.info("PROGRESS: saving document #%i", docno) if index: posnow = mw.fout.tell() if posnow == poslast: offsets[-1] = -1 offsets.append(posnow) poslast = posnow max_id, veclen = mw.write_vector(docno, bow) _num_terms = max(_num_terms, 1 + max_id) num_nnz += veclen if metadata: utils.pickle(docno2metadata, fname + '.metadata.cpickle') corpus.metadata = orig_metadata num_docs = docno + 1 num_terms = num_terms or _num_terms if num_docs * num_terms != 0: logger.info( "saved %ix%i matrix, density=%.3f%% (%i/%i)", num_docs, num_terms, 100.0 * num_nnz / (num_docs * num_terms), num_nnz, num_docs * num_terms ) # now write proper headers, by seeking and overwriting the spaces written earlier mw.fake_headers(num_docs, num_terms, num_nnz) mw.close() if index: return offsets def __del__(self): """Close `self.fout` file. Alias for :meth:`~gensim.matutils.MmWriter.close`. Warnings -------- Closing the file explicitly via the close() method is preferred and safer. """ self.close() # does nothing if called twice (on an already closed file), so no worries def close(self): """Close `self.fout` file.""" logger.debug("closing %s", self.fname) if hasattr(self, 'fout'): self.fout.close() try: from gensim.corpora._mmreader import MmReader # noqa: F401 except ImportError: raise utils.NO_CYTHON