class BaseTopicModel: def print_topic(self, topicno, topn=10): """Get a single topic as a formatted string. Parameters ---------- topicno : int Topic id. topn : int Number of words from topic that will be used. Returns ------- str String representation of topic, like '-0.340 * "category" + 0.298 * "$M$" + 0.183 * "algebra" + ... '. """ return ' + '.join('%.3f*"%s"' % (v, k) for k, v in self.show_topic(topicno, topn)) def print_topics(self, num_topics=20, num_words=10): """Get the most significant topics (alias for `show_topics()` method). Parameters ---------- num_topics : int, optional The number of topics to be selected, if -1 - all topics will be in result (ordered by significance). num_words : int, optional The number of words to be included per topics (ordered by significance). Returns ------- list of (int, list of (str, float)) Sequence with (topic_id, [(word, value), ... ]). """ return self.show_topics(num_topics=num_topics, num_words=num_words, log=True) def get_topics(self): """Get words X topics matrix. Returns -------- numpy.ndarray: The term topic matrix learned during inference, shape (`num_topics`, `vocabulary_size`). Raises ------ NotImplementedError """ raise NotImplementedError