#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2012 Radim Rehurek # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html import logging from gensim import interfaces, matutils logger = logging.getLogger(__name__) class NormModel(interfaces.TransformationABC): """Objects of this class realize the explicit normalization of vectors (l1 and l2).""" def __init__(self, corpus=None, norm='l2'): r"""Compute the l1 or l2 normalization by normalizing separately for each document in a corpus. If :math:`v_{i,j}` is the 'i'th component of the vector representing document 'j', the l1 normalization is .. math:: l1_{i, j} = \frac{v_{i,j}}{\sum_k |v_{k,j}|} the l2 normalization is .. math:: l2_{i, j} = \frac{v_{i,j}}{\sqrt{\sum_k v_{k,j}^2}} Parameters ---------- corpus : iterable of iterable of (int, number), optional Input corpus. norm : {'l1', 'l2'}, optional Norm used to normalize. """ self.norm = norm if corpus is not None: self.calc_norm(corpus) else: pass def __str__(self): return "NormModel(num_docs=%s, num_nnz=%s, norm=%s)" % (self.num_docs, self.num_nnz, self.norm) def calc_norm(self, corpus): """Calculate the norm by calling :func:`~gensim.matutils.unitvec` with the norm parameter. Parameters ---------- corpus : iterable of iterable of (int, number) Input corpus. """ logger.info("Performing %s normalization...", self.norm) norms = [] numnnz = 0 docno = 0 for bow in corpus: docno += 1 numnnz += len(bow) norms.append(matutils.unitvec(bow, self.norm)) self.num_docs = docno self.num_nnz = numnnz self.norms = norms def normalize(self, bow): """Normalize a simple count representation. Parameters ---------- bow : list of (int, number) Document in BoW format. Returns ------- list of (int, number) Normalized document. """ vector = matutils.unitvec(bow, self.norm) return vector def __getitem__(self, bow): """Call the :func:`~gensim.models.normmodel.NormModel.normalize`. Parameters ---------- bow : list of (int, number) Document in BoW format. Returns ------- list of (int, number) Normalized document. """ return self.normalize(bow)