#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2010 Radim Rehurek # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Automated tests for checking transformation algorithms (the models package). """ import numpy as np class TestBaseTopicModel: def test_print_topic(self): topics = self.model.show_topics(formatted=True) for topic_no, topic in topics: self.assertTrue(isinstance(topic_no, int)) self.assertTrue(isinstance(topic, str)) def test_print_topics(self): topics = self.model.print_topics() for topic_no, topic in topics: self.assertTrue(isinstance(topic_no, int)) self.assertTrue(isinstance(topic, str)) def test_show_topic(self): topic = self.model.show_topic(1) for k, v in topic: self.assertTrue(isinstance(k, str)) self.assertTrue(isinstance(v, (np.floating, float))) def test_show_topics(self): topics = self.model.show_topics(formatted=False) for topic_no, topic in topics: self.assertTrue(isinstance(topic_no, int)) self.assertTrue(isinstance(topic, list)) for k, v in topic: self.assertTrue(isinstance(k, str)) self.assertTrue(isinstance(v, (np.floating, float))) def test_get_topics(self): topics = self.model.get_topics() vocab_size = len(self.model.id2word) for topic in topics: self.assertTrue(isinstance(topic, np.ndarray)) # Note: started moving to np.float32 as default # self.assertEqual(topic.dtype, np.float64) self.assertEqual(vocab_size, topic.shape[0]) self.assertAlmostEqual(np.sum(topic), 1.0, 5)