# This file is part of h5py, a Python interface to the HDF5 library. # # http://www.h5py.org # # Copyright 2008-2013 Andrew Collette and contributors # # License: Standard 3-clause BSD; see "license.txt" for full license terms # and contributor agreement. """ Implements support for high-level access to HDF5 groups. """ from contextlib import contextmanager import posixpath as pp import numpy from .compat import filename_decode, filename_encode from .. import h5, h5g, h5i, h5o, h5r, h5t, h5l, h5p from . import base from .base import HLObject, MutableMappingHDF5, phil, with_phil from . import dataset from . import datatype from .vds import vds_support class Group(HLObject, MutableMappingHDF5): """ Represents an HDF5 group. """ def __init__(self, bind): """ Create a new Group object by binding to a low-level GroupID. """ with phil: if not isinstance(bind, h5g.GroupID): raise ValueError("%s is not a GroupID" % bind) super(Group, self).__init__(bind) _gcpl_crt_order = h5p.create(h5p.GROUP_CREATE) _gcpl_crt_order.set_link_creation_order( h5p.CRT_ORDER_TRACKED | h5p.CRT_ORDER_INDEXED) _gcpl_crt_order.set_attr_creation_order( h5p.CRT_ORDER_TRACKED | h5p.CRT_ORDER_INDEXED) def create_group(self, name, track_order=None): """ Create and return a new subgroup. Name may be absolute or relative. Fails if the target name already exists. track_order Track dataset/group/attribute creation order under this group if True. If None use global default h5.get_config().track_order. """ if track_order is None: track_order = h5.get_config().track_order with phil: name, lcpl = self._e(name, lcpl=True) gcpl = Group._gcpl_crt_order if track_order else None gid = h5g.create(self.id, name, lcpl=lcpl, gcpl=gcpl) return Group(gid) def create_dataset(self, name, shape=None, dtype=None, data=None, **kwds): """ Create a new HDF5 dataset name Name of the dataset (absolute or relative). Provide None to make an anonymous dataset. shape Dataset shape. Use "()" for scalar datasets. Required if "data" isn't provided. dtype Numpy dtype or string. If omitted, dtype('f') will be used. Required if "data" isn't provided; otherwise, overrides data array's dtype. data Provide data to initialize the dataset. If used, you can omit shape and dtype arguments. Keyword-only arguments: chunks (Tuple or int) Chunk shape, or True to enable auto-chunking. Integers can be used for 1D shape. maxshape (Tuple or int) Make the dataset resizable up to this shape. Use None for axes you want to be unlimited. Integers can be used for 1D shape. compression (String or int) Compression strategy. Legal values are 'gzip', 'szip', 'lzf'. If an integer in range(10), this indicates gzip compression level. Otherwise, an integer indicates the number of a dynamically loaded compression filter. compression_opts Compression settings. This is an integer for gzip, 2-tuple for szip, etc. If specifying a dynamically loaded compression filter number, this must be a tuple of values. scaleoffset (Integer) Enable scale/offset filter for (usually) lossy compression of integer or floating-point data. For integer data, the value of scaleoffset is the number of bits to retain (pass 0 to let HDF5 determine the minimum number of bits necessary for lossless compression). For floating point data, scaleoffset is the number of digits after the decimal place to retain; stored values thus have absolute error less than 0.5*10**(-scaleoffset). shuffle (T/F) Enable shuffle filter. fletcher32 (T/F) Enable fletcher32 error detection. Not permitted in conjunction with the scale/offset filter. fillvalue (Scalar) Use this value for uninitialized parts of the dataset. track_times (T/F) Enable dataset creation timestamps. track_order (T/F) Track attribute creation order if True. If omitted use global default h5.get_config().track_order. external (Iterable of tuples) Sets the external storage property, thus designating that the dataset will be stored in one or more non-HDF5 files external to the HDF5 file. Adds each tuple of (name, offset, size) to the dataset's list of external files. Each name must be a str, bytes, or os.PathLike; each offset and size, an integer. If only a name is given instead of an iterable of tuples, it is equivalent to [(name, 0, h5py.h5f.UNLIMITED)]. allow_unknown_filter (T/F) Do not check that the requested filter is available for use. This should only be used with ``write_direct_chunk``, where the caller compresses the data before handing it to h5py. """ if 'track_order' not in kwds: kwds['track_order'] = h5.get_config().track_order with phil: group = self if name: name = self._e(name) if b'/' in name.lstrip(b'/'): parent_path, name = name.rsplit(b'/', 1) group = self.require_group(parent_path) dsid = dataset.make_new_dset(group, shape, dtype, data, name, **kwds) dset = dataset.Dataset(dsid) return dset if vds_support: def create_virtual_dataset(self, name, layout, fillvalue=None): """Create a new virtual dataset in this group. See virtual datasets in the docs for more information. name (str) Name of the new dataset layout (VirtualLayout) Defines the sources for the virtual dataset fillvalue The value to use where there is no data. """ with phil: group = self if name: name = self._e(name) if b'/' in name.lstrip(b'/'): parent_path, name = name.rsplit(b'/', 1) group = self.require_group(parent_path) dsid = layout.make_dataset( group, name=name, fillvalue=fillvalue, ) dset = dataset.Dataset(dsid) return dset @contextmanager def build_virtual_dataset( self, name, shape, dtype, maxshape=None, fillvalue=None ): """Assemble a virtual dataset in this group. This is used as a context manager:: with f.build_virtual_dataset('virt', (10, 1000), np.uint32) as layout: layout[0] = h5py.VirtualSource('foo.h5', 'data', (1000,)) name (str) Name of the new dataset shape (tuple) Shape of the dataset dtype A numpy dtype for data read from the virtual dataset maxshape (tuple, optional) Maximum dimensions if the dataset can grow. Use None for unlimited dimensions. fillvalue The value used where no data is available. """ from .vds import VirtualLayout layout = VirtualLayout(shape, dtype, maxshape, self.file.filename) yield layout self.create_virtual_dataset(name, layout, fillvalue) def require_dataset(self, name, shape, dtype, exact=False, **kwds): """ Open a dataset, creating it if it doesn't exist. If keyword "exact" is False (default), an existing dataset must have the same shape and a conversion-compatible dtype to be returned. If True, the shape and dtype must match exactly. Other dataset keywords (see create_dataset) may be provided, but are only used if a new dataset is to be created. Raises TypeError if an incompatible object already exists, or if the shape or dtype don't match according to the above rules. """ with phil: if not name in self: return self.create_dataset(name, *(shape, dtype), **kwds) if isinstance(shape, int): shape = (shape,) dset = self[name] if not isinstance(dset, dataset.Dataset): raise TypeError("Incompatible object (%s) already exists" % dset.__class__.__name__) if not shape == dset.shape: raise TypeError("Shapes do not match (existing %s vs new %s)" % (dset.shape, shape)) if exact: if not dtype == dset.dtype: raise TypeError("Datatypes do not exactly match (existing %s vs new %s)" % (dset.dtype, dtype)) elif not numpy.can_cast(dtype, dset.dtype): raise TypeError("Datatypes cannot be safely cast (existing %s vs new %s)" % (dset.dtype, dtype)) return dset def create_dataset_like(self, name, other, **kwupdate): """ Create a dataset similar to `other`. name Name of the dataset (absolute or relative). Provide None to make an anonymous dataset. other The dataset which the new dataset should mimic. All properties, such as shape, dtype, chunking, ... will be taken from it, but no data or attributes are being copied. Any dataset keywords (see create_dataset) may be provided, including shape and dtype, in which case the provided values take precedence over those from `other`. """ for k in ('shape', 'dtype', 'chunks', 'compression', 'compression_opts', 'scaleoffset', 'shuffle', 'fletcher32', 'fillvalue'): kwupdate.setdefault(k, getattr(other, k)) # TODO: more elegant way to pass these (dcpl to create_dataset?) dcpl = other.id.get_create_plist() kwupdate.setdefault('track_times', dcpl.get_obj_track_times()) kwupdate.setdefault('track_order', dcpl.get_attr_creation_order() > 0) # Special case: the maxshape property always exists, but if we pass it # to create_dataset, the new dataset will automatically get chunked # layout. So we copy it only if it is different from shape. if other.maxshape != other.shape: kwupdate.setdefault('maxshape', other.maxshape) return self.create_dataset(name, **kwupdate) def require_group(self, name): # TODO: support kwargs like require_dataset """Return a group, creating it if it doesn't exist. TypeError is raised if something with that name already exists that isn't a group. """ with phil: if not name in self: return self.create_group(name) grp = self[name] if not isinstance(grp, Group): raise TypeError("Incompatible object (%s) already exists" % grp.__class__.__name__) return grp @with_phil def __getitem__(self, name): """ Open an object in the file """ if isinstance(name, h5r.Reference): oid = h5r.dereference(name, self.id) if oid is None: raise ValueError("Invalid HDF5 object reference") elif isinstance(name, (bytes, str)): oid = h5o.open(self.id, self._e(name), lapl=self._lapl) else: raise TypeError("Accessing a group is done with bytes or str, " " not {}".format(type(name))) otype = h5i.get_type(oid) if otype == h5i.GROUP: return Group(oid) elif otype == h5i.DATASET: return dataset.Dataset(oid, readonly=(self.file.mode == 'r')) elif otype == h5i.DATATYPE: return datatype.Datatype(oid) else: raise TypeError("Unknown object type") def get(self, name, default=None, getclass=False, getlink=False): """ Retrieve an item or other information. "name" given only: Return the item, or "default" if it doesn't exist "getclass" is True: Return the class of object (Group, Dataset, etc.), or "default" if nothing with that name exists "getlink" is True: Return HardLink, SoftLink or ExternalLink instances. Return "default" if nothing with that name exists. "getlink" and "getclass" are True: Return HardLink, SoftLink and ExternalLink classes. Return "default" if nothing with that name exists. Example: >>> cls = group.get('foo', getclass=True) >>> if cls == SoftLink: """ # pylint: disable=arguments-differ with phil: if not (getclass or getlink): try: return self[name] except KeyError: return default if not name in self: return default elif getclass and not getlink: typecode = h5o.get_info(self.id, self._e(name)).type try: return {h5o.TYPE_GROUP: Group, h5o.TYPE_DATASET: dataset.Dataset, h5o.TYPE_NAMED_DATATYPE: datatype.Datatype}[typecode] except KeyError: raise TypeError("Unknown object type") elif getlink: typecode = self.id.links.get_info(self._e(name)).type if typecode == h5l.TYPE_SOFT: if getclass: return SoftLink linkbytes = self.id.links.get_val(self._e(name)) return SoftLink(self._d(linkbytes)) elif typecode == h5l.TYPE_EXTERNAL: if getclass: return ExternalLink filebytes, linkbytes = self.id.links.get_val(self._e(name)) return ExternalLink( filename_decode(filebytes), self._d(linkbytes) ) elif typecode == h5l.TYPE_HARD: return HardLink if getclass else HardLink() else: raise TypeError("Unknown link type") def __setitem__(self, name, obj): """ Add an object to the group. The name must not already be in use. The action taken depends on the type of object assigned: Named HDF5 object (Dataset, Group, Datatype) A hard link is created at "name" which points to the given object. SoftLink or ExternalLink Create the corresponding link. Numpy ndarray The array is converted to a dataset object, with default settings (contiguous storage, etc.). Numpy dtype Commit a copy of the datatype as a named datatype in the file. Anything else Attempt to convert it to an ndarray and store it. Scalar values are stored as scalar datasets. Raise ValueError if we can't understand the resulting array dtype. """ with phil: name, lcpl = self._e(name, lcpl=True) if isinstance(obj, HLObject): h5o.link(obj.id, self.id, name, lcpl=lcpl, lapl=self._lapl) elif isinstance(obj, SoftLink): self.id.links.create_soft(name, self._e(obj.path), lcpl=lcpl, lapl=self._lapl) elif isinstance(obj, ExternalLink): fn = filename_encode(obj.filename) self.id.links.create_external(name, fn, self._e(obj.path), lcpl=lcpl, lapl=self._lapl) elif isinstance(obj, numpy.dtype): htype = h5t.py_create(obj, logical=True) htype.commit(self.id, name, lcpl=lcpl) else: ds = self.create_dataset(None, data=obj) h5o.link(ds.id, self.id, name, lcpl=lcpl) @with_phil def __delitem__(self, name): """ Delete (unlink) an item from this group. """ self.id.unlink(self._e(name)) @with_phil def __len__(self): """ Number of members attached to this group """ return self.id.get_num_objs() @with_phil def __iter__(self): """ Iterate over member names """ for x in self.id.__iter__(): yield self._d(x) @with_phil def __reversed__(self): """ Iterate over member names in reverse order. """ for x in self.id.__reversed__(): yield self._d(x) @with_phil def __contains__(self, name): """ Test if a member name exists """ return self._e(name) in self.id def copy(self, source, dest, name=None, shallow=False, expand_soft=False, expand_external=False, expand_refs=False, without_attrs=False): """Copy an object or group. The source can be a path, Group, Dataset, or Datatype object. The destination can be either a path or a Group object. The source and destinations need not be in the same file. If the source is a Group object, all objects contained in that group will be copied recursively. When the destination is a Group object, by default the target will be created in that group with its current name (basename of obj.name). You can override that by setting "name" to a string. There are various options which all default to "False": - shallow: copy only immediate members of a group. - expand_soft: expand soft links into new objects. - expand_external: expand external links into new objects. - expand_refs: copy objects that are pointed to by references. - without_attrs: copy object without copying attributes. Example: >>> f = File('myfile.hdf5', 'w') >>> f.create_group("MyGroup") >>> list(f.keys()) ['MyGroup'] >>> f.copy('MyGroup', 'MyCopy') >>> list(f.keys()) ['MyGroup', 'MyCopy'] """ with phil: if isinstance(source, HLObject): source_path = '.' else: # Interpret source as a path relative to this group source_path = source source = self if isinstance(dest, Group): if name is not None: dest_path = name elif source_path == '.': dest_path = pp.basename(h5i.get_name(source.id)) else: # copy source into dest group: dest_name/source_name dest_path = pp.basename(h5i.get_name(source[source_path].id)) elif isinstance(dest, HLObject): raise TypeError("Destination must be path or Group object") else: # Interpret destination as a path relative to this group dest_path = dest dest = self flags = 0 if shallow: flags |= h5o.COPY_SHALLOW_HIERARCHY_FLAG if expand_soft: flags |= h5o.COPY_EXPAND_SOFT_LINK_FLAG if expand_external: flags |= h5o.COPY_EXPAND_EXT_LINK_FLAG if expand_refs: flags |= h5o.COPY_EXPAND_REFERENCE_FLAG if without_attrs: flags |= h5o.COPY_WITHOUT_ATTR_FLAG if flags: copypl = h5p.create(h5p.OBJECT_COPY) copypl.set_copy_object(flags) else: copypl = None h5o.copy(source.id, self._e(source_path), dest.id, self._e(dest_path), copypl, base.dlcpl) def move(self, source, dest): """ Move a link to a new location in the file. If "source" is a hard link, this effectively renames the object. If "source" is a soft or external link, the link itself is moved, with its value unmodified. """ with phil: if source == dest: return self.id.links.move(self._e(source), self.id, self._e(dest), lapl=self._lapl, lcpl=self._lcpl) def visit(self, func): """ Recursively visit all names in this group and subgroups (HDF5 1.8). You supply a callable (function, method or callable object); it will be called exactly once for each link in this group and every group below it. Your callable must conform to the signature: func() => Returning None continues iteration, returning anything else stops and immediately returns that value from the visit method. No particular order of iteration within groups is guaranteed. Example: >>> # List the entire contents of the file >>> f = File("foo.hdf5") >>> list_of_names = [] >>> f.visit(list_of_names.append) """ with phil: def proxy(name): """ Call the function with the text name, not bytes """ return func(self._d(name)) return h5o.visit(self.id, proxy) def visititems(self, func): """ Recursively visit names and objects in this group (HDF5 1.8). You supply a callable (function, method or callable object); it will be called exactly once for each link in this group and every group below it. Your callable must conform to the signature: func(, ) => Returning None continues iteration, returning anything else stops and immediately returns that value from the visit method. No particular order of iteration within groups is guaranteed. Example: # Get a list of all datasets in the file >>> mylist = [] >>> def func(name, obj): ... if isinstance(obj, Dataset): ... mylist.append(name) ... >>> f = File('foo.hdf5') >>> f.visititems(func) """ with phil: def proxy(name): """ Use the text name of the object, not bytes """ name = self._d(name) return func(name, self[name]) return h5o.visit(self.id, proxy) @with_phil def __repr__(self): if not self: r = u"" else: namestr = ( '"%s"' % self.name ) if self.name is not None else u"(anonymous)" r = '' % (namestr, len(self)) return r class HardLink(object): """ Represents a hard link in an HDF5 file. Provided only so that Group.get works in a sensible way. Has no other function. """ pass class SoftLink(object): """ Represents a symbolic ("soft") link in an HDF5 file. The path may be absolute or relative. No checking is performed to ensure that the target actually exists. """ @property def path(self): """ Soft link value. Not guaranteed to be a valid path. """ return self._path def __init__(self, path): self._path = str(path) def __repr__(self): return '' % self.path class ExternalLink(object): """ Represents an HDF5 external link. Paths may be absolute or relative. No checking is performed to ensure either the target or file exists. """ @property def path(self): """ Soft link path, i.e. the part inside the HDF5 file. """ return self._path @property def filename(self): """ Path to the external HDF5 file in the filesystem. """ return self._filename def __init__(self, filename, path): self._filename = filename_decode(filename_encode(filename)) self._path = path def __repr__(self): return '