Metadata-Version: 2.1 Name: itemloaders Version: 1.0.4 Summary: Base library for scrapy's ItemLoader Home-page: https://github.com/scrapy/itemloaders Author: Scrapinghub Author-email: info@scrapinghub.com License: BSD Project-URL: Documentation, https://itemloaders.readthedocs.io/ Project-URL: Source, https://github.com/scrapy/itemloaders Platform: UNKNOWN Classifier: Development Status :: 5 - Production/Stable Classifier: Intended Audience :: Developers Classifier: License :: OSI Approved :: BSD License Classifier: Operating System :: OS Independent Classifier: Programming Language :: Python Classifier: Programming Language :: Python :: 3 Classifier: Programming Language :: Python :: 3.6 Classifier: Programming Language :: Python :: 3.7 Classifier: Programming Language :: Python :: 3.8 Classifier: Programming Language :: Python :: Implementation :: CPython Classifier: Programming Language :: Python :: Implementation :: PyPy Requires-Python: >=3.6 Description-Content-Type: text/x-rst License-File: LICENSE Requires-Dist: w3lib (>=1.17.0) Requires-Dist: parsel (>=1.5.0) Requires-Dist: jmespath (>=0.9.5) Requires-Dist: itemadapter (>=0.1.0) =========== itemloaders =========== .. image:: https://img.shields.io/pypi/v/itemloaders.svg :target: https://pypi.python.org/pypi/itemloaders :alt: PyPI Version .. image:: https://img.shields.io/pypi/pyversions/itemloaders.svg :target: https://pypi.python.org/pypi/itemloaders :alt: Supported Python Versions .. image:: https://travis-ci.com/scrapy/itemloaders.svg?branch=master :target: https://travis-ci.com/scrapy/itemloaders :alt: Build Status .. image:: https://codecov.io/github/scrapy/itemloaders/coverage.svg?branch=master :target: https://codecov.io/gh/scrapy/itemloaders :alt: Coverage report .. image:: https://readthedocs.org/projects/itemloaders/badge/?version=latest :target: https://itemloaders.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status ``itemloaders`` is a library that helps you collect data from HTML and XML sources. It comes in handy to extract data from web pages, as it supports data extraction using CSS and XPath Selectors. It's specially useful when you need to standardize the data from many sources. For example, it allows you to have all your casting and parsing rules in a single place. Here is an example to get you started:: from itemloaders import ItemLoader from parsel import Selector html_data = '''
$ 100.12
''' loader = ItemLoader(selector=Selector(html_data)) loader.add_xpath('name', '//div[@class="product_name"]/text()') loader.add_xpath('name', '//div[@class="product_title"]/text()') loader.add_css('price', '#price::text') loader.add_value('last_updated', 'today') # you can also use literal values item = loader.load_item() item # {'name': ['Some random product page'], 'price': ['$ 100.12'], 'last_updated': ['today']} For more information, check out the `documentation