# art3d.py, original mplot3d version by John Porter # Parts rewritten by Reinier Heeres # Minor additions by Ben Axelrod """ Module containing 3D artist code and functions to convert 2D artists into 3D versions which can be added to an Axes3D. """ import math import numpy as np from matplotlib import ( _api, artist, cbook, colors as mcolors, lines, text as mtext, path as mpath) from matplotlib.collections import ( LineCollection, PolyCollection, PatchCollection, PathCollection) from matplotlib.colors import Normalize from matplotlib.patches import Patch from . import proj3d def _norm_angle(a): """Return the given angle normalized to -180 < *a* <= 180 degrees.""" a = (a + 360) % 360 if a > 180: a = a - 360 return a def _norm_text_angle(a): """Return the given angle normalized to -90 < *a* <= 90 degrees.""" a = (a + 180) % 180 if a > 90: a = a - 180 return a def get_dir_vector(zdir): """ Return a direction vector. Parameters ---------- zdir : {'x', 'y', 'z', None, 3-tuple} The direction. Possible values are: - 'x': equivalent to (1, 0, 0) - 'y': equivalent to (0, 1, 0) - 'z': equivalent to (0, 0, 1) - *None*: equivalent to (0, 0, 0) - an iterable (x, y, z) is converted to a NumPy array, if not already Returns ------- x, y, z : array-like The direction vector. """ if zdir == 'x': return np.array((1, 0, 0)) elif zdir == 'y': return np.array((0, 1, 0)) elif zdir == 'z': return np.array((0, 0, 1)) elif zdir is None: return np.array((0, 0, 0)) elif np.iterable(zdir) and len(zdir) == 3: return np.array(zdir) else: raise ValueError("'x', 'y', 'z', None or vector of length 3 expected") class Text3D(mtext.Text): """ Text object with 3D position and direction. Parameters ---------- x, y, z The position of the text. text : str The text string to display. zdir : {'x', 'y', 'z', None, 3-tuple} The direction of the text. See `.get_dir_vector` for a description of the values. Other Parameters ---------------- **kwargs All other parameters are passed on to `~matplotlib.text.Text`. """ def __init__(self, x=0, y=0, z=0, text='', zdir='z', **kwargs): mtext.Text.__init__(self, x, y, text, **kwargs) self.set_3d_properties(z, zdir) def get_position_3d(self): """Return the (x, y, z) position of the text.""" return self._x, self._y, self._z def set_position_3d(self, xyz, zdir=None): """ Set the (*x*, *y*, *z*) position of the text. Parameters ---------- xyz : (float, float, float) The position in 3D space. zdir : {'x', 'y', 'z', None, 3-tuple} The direction of the text. If unspecified, the zdir will not be changed. """ super().set_position(xyz[:2]) self.set_z(xyz[2]) if zdir is not None: self._dir_vec = get_dir_vector(zdir) def set_z(self, z): """ Set the *z* position of the text. Parameters ---------- z : float """ self._z = z self.stale = True def set_3d_properties(self, z=0, zdir='z'): self._z = z self._dir_vec = get_dir_vector(zdir) self.stale = True @artist.allow_rasterization def draw(self, renderer): position3d = np.array((self._x, self._y, self._z)) proj = proj3d.proj_trans_points( [position3d, position3d + self._dir_vec], self.axes.M) dx = proj[0][1] - proj[0][0] dy = proj[1][1] - proj[1][0] angle = math.degrees(math.atan2(dy, dx)) with cbook._setattr_cm(self, _x=proj[0][0], _y=proj[1][0], _rotation=_norm_text_angle(angle)): mtext.Text.draw(self, renderer) self.stale = False def get_tightbbox(self, renderer): # Overwriting the 2d Text behavior which is not valid for 3d. # For now, just return None to exclude from layout calculation. return None def text_2d_to_3d(obj, z=0, zdir='z'): """Convert a Text to a Text3D object.""" obj.__class__ = Text3D obj.set_3d_properties(z, zdir) class Line3D(lines.Line2D): """ 3D line object. """ def __init__(self, xs, ys, zs, *args, **kwargs): """ Keyword arguments are passed onto :func:`~matplotlib.lines.Line2D`. """ super().__init__([], [], *args, **kwargs) self._verts3d = xs, ys, zs def set_3d_properties(self, zs=0, zdir='z'): xs = self.get_xdata() ys = self.get_ydata() zs = np.broadcast_to(zs, len(xs)) self._verts3d = juggle_axes(xs, ys, zs, zdir) self.stale = True def set_data_3d(self, *args): """ Set the x, y and z data Parameters ---------- x : array-like The x-data to be plotted. y : array-like The y-data to be plotted. z : array-like The z-data to be plotted. Notes ----- Accepts x, y, z arguments or a single array-like (x, y, z) """ if len(args) == 1: self._verts3d = args[0] else: self._verts3d = args self.stale = True def get_data_3d(self): """ Get the current data Returns ------- verts3d : length-3 tuple or array-like The current data as a tuple or array-like. """ return self._verts3d @artist.allow_rasterization def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, self.axes.M) self.set_data(xs, ys) super().draw(renderer) self.stale = False def line_2d_to_3d(line, zs=0, zdir='z'): """Convert a 2D line to 3D.""" line.__class__ = Line3D line.set_3d_properties(zs, zdir) def _path_to_3d_segment(path, zs=0, zdir='z'): """Convert a path to a 3D segment.""" zs = np.broadcast_to(zs, len(path)) pathsegs = path.iter_segments(simplify=False, curves=False) seg = [(x, y, z) for (((x, y), code), z) in zip(pathsegs, zs)] seg3d = [juggle_axes(x, y, z, zdir) for (x, y, z) in seg] return seg3d def _paths_to_3d_segments(paths, zs=0, zdir='z'): """Convert paths from a collection object to 3D segments.""" if not np.iterable(zs): zs = np.broadcast_to(zs, len(paths)) else: if len(zs) != len(paths): raise ValueError('Number of z-coordinates does not match paths.') segs = [_path_to_3d_segment(path, pathz, zdir) for path, pathz in zip(paths, zs)] return segs def _path_to_3d_segment_with_codes(path, zs=0, zdir='z'): """Convert a path to a 3D segment with path codes.""" zs = np.broadcast_to(zs, len(path)) pathsegs = path.iter_segments(simplify=False, curves=False) seg_codes = [((x, y, z), code) for ((x, y), code), z in zip(pathsegs, zs)] if seg_codes: seg, codes = zip(*seg_codes) seg3d = [juggle_axes(x, y, z, zdir) for (x, y, z) in seg] else: seg3d = [] codes = [] return seg3d, list(codes) def _paths_to_3d_segments_with_codes(paths, zs=0, zdir='z'): """ Convert paths from a collection object to 3D segments with path codes. """ zs = np.broadcast_to(zs, len(paths)) segments_codes = [_path_to_3d_segment_with_codes(path, pathz, zdir) for path, pathz in zip(paths, zs)] if segments_codes: segments, codes = zip(*segments_codes) else: segments, codes = [], [] return list(segments), list(codes) class Line3DCollection(LineCollection): """ A collection of 3D lines. """ def set_sort_zpos(self, val): """Set the position to use for z-sorting.""" self._sort_zpos = val self.stale = True def set_segments(self, segments): """ Set 3D segments. """ self._segments3d = segments super().set_segments([]) @_api.delete_parameter('3.4', 'renderer') def do_3d_projection(self, renderer=None): """ Project the points according to renderer matrix. """ xyslist = [proj3d.proj_trans_points(points, self.axes.M) for points in self._segments3d] segments_2d = [np.column_stack([xs, ys]) for xs, ys, zs in xyslist] LineCollection.set_segments(self, segments_2d) # FIXME minz = 1e9 for xs, ys, zs in xyslist: minz = min(minz, min(zs)) return minz @artist.allow_rasterization @_api.delete_parameter('3.4', 'project', alternative='Line3DCollection.do_3d_projection') def draw(self, renderer, project=False): if project: self.do_3d_projection() super().draw(renderer) def line_collection_2d_to_3d(col, zs=0, zdir='z'): """Convert a LineCollection to a Line3DCollection object.""" segments3d = _paths_to_3d_segments(col.get_paths(), zs, zdir) col.__class__ = Line3DCollection col.set_segments(segments3d) class Patch3D(Patch): """ 3D patch object. """ def __init__(self, *args, zs=(), zdir='z', **kwargs): super().__init__(*args, **kwargs) self.set_3d_properties(zs, zdir) def set_3d_properties(self, verts, zs=0, zdir='z'): zs = np.broadcast_to(zs, len(verts)) self._segment3d = [juggle_axes(x, y, z, zdir) for ((x, y), z) in zip(verts, zs)] def get_path(self): return self._path2d @_api.delete_parameter('3.4', 'renderer') def do_3d_projection(self, renderer=None): s = self._segment3d xs, ys, zs = zip(*s) vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, self.axes.M) self._path2d = mpath.Path(np.column_stack([vxs, vys])) return min(vzs) class PathPatch3D(Patch3D): """ 3D PathPatch object. """ def __init__(self, path, *, zs=(), zdir='z', **kwargs): # Not super().__init__! Patch.__init__(self, **kwargs) self.set_3d_properties(path, zs, zdir) def set_3d_properties(self, path, zs=0, zdir='z'): Patch3D.set_3d_properties(self, path.vertices, zs=zs, zdir=zdir) self._code3d = path.codes @_api.delete_parameter('3.4', 'renderer') def do_3d_projection(self, renderer=None): s = self._segment3d xs, ys, zs = zip(*s) vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, self.axes.M) self._path2d = mpath.Path(np.column_stack([vxs, vys]), self._code3d) return min(vzs) def _get_patch_verts(patch): """Return a list of vertices for the path of a patch.""" trans = patch.get_patch_transform() path = patch.get_path() polygons = path.to_polygons(trans) return polygons[0] if len(polygons) else np.array([]) def patch_2d_to_3d(patch, z=0, zdir='z'): """Convert a Patch to a Patch3D object.""" verts = _get_patch_verts(patch) patch.__class__ = Patch3D patch.set_3d_properties(verts, z, zdir) def pathpatch_2d_to_3d(pathpatch, z=0, zdir='z'): """Convert a PathPatch to a PathPatch3D object.""" path = pathpatch.get_path() trans = pathpatch.get_patch_transform() mpath = trans.transform_path(path) pathpatch.__class__ = PathPatch3D pathpatch.set_3d_properties(mpath, z, zdir) class Patch3DCollection(PatchCollection): """ A collection of 3D patches. """ def __init__(self, *args, zs=0, zdir='z', depthshade=True, **kwargs): """ Create a collection of flat 3D patches with its normal vector pointed in *zdir* direction, and located at *zs* on the *zdir* axis. 'zs' can be a scalar or an array-like of the same length as the number of patches in the collection. Constructor arguments are the same as for :class:`~matplotlib.collections.PatchCollection`. In addition, keywords *zs=0* and *zdir='z'* are available. Also, the keyword argument *depthshade* is available to indicate whether or not to shade the patches in order to give the appearance of depth (default is *True*). This is typically desired in scatter plots. """ self._depthshade = depthshade super().__init__(*args, **kwargs) self.set_3d_properties(zs, zdir) def get_depthshade(self): return self._depthshade def set_depthshade(self, depthshade): """ Set whether depth shading is performed on collection members. Parameters ---------- depthshade : bool Whether to shade the patches in order to give the appearance of depth. """ self._depthshade = depthshade self.stale = True def set_sort_zpos(self, val): """Set the position to use for z-sorting.""" self._sort_zpos = val self.stale = True def set_3d_properties(self, zs, zdir): # Force the collection to initialize the face and edgecolors # just in case it is a scalarmappable with a colormap. self.update_scalarmappable() offsets = self.get_offsets() if len(offsets) > 0: xs, ys = offsets.T else: xs = [] ys = [] self._offsets3d = juggle_axes(xs, ys, np.atleast_1d(zs), zdir) self._z_markers_idx = slice(-1) self._vzs = None self.stale = True @_api.delete_parameter('3.4', 'renderer') def do_3d_projection(self, renderer=None): xs, ys, zs = self._offsets3d vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, self.axes.M) self._vzs = vzs super().set_offsets(np.column_stack([vxs, vys])) if vzs.size > 0: return min(vzs) else: return np.nan def _maybe_depth_shade_and_sort_colors(self, color_array): color_array = ( _zalpha(color_array, self._vzs) if self._vzs is not None and self._depthshade else color_array ) if len(color_array) > 1: color_array = color_array[self._z_markers_idx] return mcolors.to_rgba_array(color_array, self._alpha) def get_facecolor(self): return self._maybe_depth_shade_and_sort_colors(super().get_facecolor()) def get_edgecolor(self): # We need this check here to make sure we do not double-apply the depth # based alpha shading when the edge color is "face" which means the # edge colour should be identical to the face colour. if cbook._str_equal(self._edgecolors, 'face'): return self.get_facecolor() return self._maybe_depth_shade_and_sort_colors(super().get_edgecolor()) class Path3DCollection(PathCollection): """ A collection of 3D paths. """ def __init__(self, *args, zs=0, zdir='z', depthshade=True, **kwargs): """ Create a collection of flat 3D paths with its normal vector pointed in *zdir* direction, and located at *zs* on the *zdir* axis. 'zs' can be a scalar or an array-like of the same length as the number of paths in the collection. Constructor arguments are the same as for :class:`~matplotlib.collections.PathCollection`. In addition, keywords *zs=0* and *zdir='z'* are available. Also, the keyword argument *depthshade* is available to indicate whether or not to shade the patches in order to give the appearance of depth (default is *True*). This is typically desired in scatter plots. """ self._depthshade = depthshade self._in_draw = False super().__init__(*args, **kwargs) self.set_3d_properties(zs, zdir) def draw(self, renderer): with cbook._setattr_cm(self, _in_draw=True): super().draw(renderer) def set_sort_zpos(self, val): """Set the position to use for z-sorting.""" self._sort_zpos = val self.stale = True def set_3d_properties(self, zs, zdir): # Force the collection to initialize the face and edgecolors # just in case it is a scalarmappable with a colormap. self.update_scalarmappable() offsets = self.get_offsets() if len(offsets) > 0: xs, ys = offsets.T else: xs = [] ys = [] self._offsets3d = juggle_axes(xs, ys, np.atleast_1d(zs), zdir) # In the base draw methods we access the attributes directly which # means we can not resolve the shuffling in the getter methods like # we do for the edge and face colors. # # This means we need to carry around a cache of the unsorted sizes and # widths (postfixed with 3d) and in `do_3d_projection` set the # depth-sorted version of that data into the private state used by the # base collection class in its draw method. # # Grab the current sizes and linewidths to preserve them. self._sizes3d = self._sizes self._linewidths3d = self._linewidths xs, ys, zs = self._offsets3d # Sort the points based on z coordinates # Performance optimization: Create a sorted index array and reorder # points and point properties according to the index array self._z_markers_idx = slice(-1) self._vzs = None self.stale = True def set_sizes(self, sizes, dpi=72.0): super().set_sizes(sizes, dpi) if not self._in_draw: self._sizes3d = sizes def set_linewidth(self, lw): super().set_linewidth(lw) if not self._in_draw: self._linewidth3d = lw def get_depthshade(self): return self._depthshade def set_depthshade(self, depthshade): """ Set whether depth shading is performed on collection members. Parameters ---------- depthshade : bool Whether to shade the patches in order to give the appearance of depth. """ self._depthshade = depthshade self.stale = True @_api.delete_parameter('3.4', 'renderer') def do_3d_projection(self, renderer=None): xs, ys, zs = self._offsets3d vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, self.axes.M) # Sort the points based on z coordinates # Performance optimization: Create a sorted index array and reorder # points and point properties according to the index array z_markers_idx = self._z_markers_idx = np.argsort(vzs)[::-1] self._vzs = vzs # we have to special case the sizes because of code in collections.py # as the draw method does # self.set_sizes(self._sizes, self.figure.dpi) # so we can not rely on doing the sorting on the way out via get_* if len(self._sizes3d) > 1: self._sizes = self._sizes3d[z_markers_idx] if len(self._linewidths3d) > 1: self._linewidths = self._linewidths3d[z_markers_idx] # Re-order items vzs = vzs[z_markers_idx] vxs = vxs[z_markers_idx] vys = vys[z_markers_idx] PathCollection.set_offsets(self, np.column_stack((vxs, vys))) return np.min(vzs) if vzs.size else np.nan def _maybe_depth_shade_and_sort_colors(self, color_array): color_array = ( _zalpha(color_array, self._vzs) if self._vzs is not None and self._depthshade else color_array ) if len(color_array) > 1: color_array = color_array[self._z_markers_idx] return mcolors.to_rgba_array(color_array, self._alpha) def get_facecolor(self): return self._maybe_depth_shade_and_sort_colors(super().get_facecolor()) def get_edgecolor(self): # We need this check here to make sure we do not double-apply the depth # based alpha shading when the edge color is "face" which means the # edge colour should be identical to the face colour. if cbook._str_equal(self._edgecolors, 'face'): return self.get_facecolor() return self._maybe_depth_shade_and_sort_colors(super().get_edgecolor()) def patch_collection_2d_to_3d(col, zs=0, zdir='z', depthshade=True): """ Convert a :class:`~matplotlib.collections.PatchCollection` into a :class:`Patch3DCollection` object (or a :class:`~matplotlib.collections.PathCollection` into a :class:`Path3DCollection` object). Parameters ---------- za The location or locations to place the patches in the collection along the *zdir* axis. Default: 0. zdir The axis in which to place the patches. Default: "z". depthshade Whether to shade the patches to give a sense of depth. Default: *True*. """ if isinstance(col, PathCollection): col.__class__ = Path3DCollection elif isinstance(col, PatchCollection): col.__class__ = Patch3DCollection col._depthshade = depthshade col._in_draw = False col.set_3d_properties(zs, zdir) class Poly3DCollection(PolyCollection): """ A collection of 3D polygons. .. note:: **Filling of 3D polygons** There is no simple definition of the enclosed surface of a 3D polygon unless the polygon is planar. In practice, Matplotlib fills the 2D projection of the polygon. This gives a correct filling appearance only for planar polygons. For all other polygons, you'll find orientations in which the edges of the polygon intersect in the projection. This will lead to an incorrect visualization of the 3D area. If you need filled areas, it is recommended to create them via `~mpl_toolkits.mplot3d.axes3d.Axes3D.plot_trisurf`, which creates a triangulation and thus generates consistent surfaces. """ def __init__(self, verts, *args, zsort='average', **kwargs): """ Parameters ---------- verts : list of (N, 3) array-like Each element describes a polygon as a sequence of ``N_i`` points ``(x, y, z)``. zsort : {'average', 'min', 'max'}, default: 'average' The calculation method for the z-order. See `~.Poly3DCollection.set_zsort` for details. *args, **kwargs All other parameters are forwarded to `.PolyCollection`. Notes ----- Note that this class does a bit of magic with the _facecolors and _edgecolors properties. """ super().__init__(verts, *args, **kwargs) if isinstance(verts, np.ndarray): if verts.ndim != 3: raise ValueError('verts must be a list of (N, 3) array-like') else: if any(len(np.shape(vert)) != 2 for vert in verts): raise ValueError('verts must be a list of (N, 3) array-like') self.set_zsort(zsort) self._codes3d = None _zsort_functions = { 'average': np.average, 'min': np.min, 'max': np.max, } def set_zsort(self, zsort): """ Set the calculation method for the z-order. Parameters ---------- zsort : {'average', 'min', 'max'} The function applied on the z-coordinates of the vertices in the viewer's coordinate system, to determine the z-order. """ self._zsortfunc = self._zsort_functions[zsort] self._sort_zpos = None self.stale = True def get_vector(self, segments3d): """Optimize points for projection.""" if len(segments3d): xs, ys, zs = np.row_stack(segments3d).T else: # row_stack can't stack zero arrays. xs, ys, zs = [], [], [] ones = np.ones(len(xs)) self._vec = np.array([xs, ys, zs, ones]) indices = [0, *np.cumsum([len(segment) for segment in segments3d])] self._segslices = [*map(slice, indices[:-1], indices[1:])] def set_verts(self, verts, closed=True): """Set 3D vertices.""" self.get_vector(verts) # 2D verts will be updated at draw time super().set_verts([], False) self._closed = closed def set_verts_and_codes(self, verts, codes): """Set 3D vertices with path codes.""" # set vertices with closed=False to prevent PolyCollection from # setting path codes self.set_verts(verts, closed=False) # and set our own codes instead. self._codes3d = codes def set_3d_properties(self): # Force the collection to initialize the face and edgecolors # just in case it is a scalarmappable with a colormap. self.update_scalarmappable() self._sort_zpos = None self.set_zsort('average') self._facecolor3d = PolyCollection.get_facecolor(self) self._edgecolor3d = PolyCollection.get_edgecolor(self) self._alpha3d = PolyCollection.get_alpha(self) self.stale = True def set_sort_zpos(self, val): """Set the position to use for z-sorting.""" self._sort_zpos = val self.stale = True @_api.delete_parameter('3.4', 'renderer') def do_3d_projection(self, renderer=None): """ Perform the 3D projection for this object. """ if self._A is not None: # force update of color mapping because we re-order them # below. If we do not do this here, the 2D draw will call # this, but we will never port the color mapped values back # to the 3D versions. # # We hold the 3D versions in a fixed order (the order the user # passed in) and sort the 2D version by view depth. self.update_scalarmappable() if self._face_is_mapped: self._facecolor3d = self._facecolors if self._edge_is_mapped: self._edgecolor3d = self._edgecolors txs, tys, tzs = proj3d._proj_transform_vec(self._vec, self.axes.M) xyzlist = [(txs[sl], tys[sl], tzs[sl]) for sl in self._segslices] # This extra fuss is to re-order face / edge colors cface = self._facecolor3d cedge = self._edgecolor3d if len(cface) != len(xyzlist): cface = cface.repeat(len(xyzlist), axis=0) if len(cedge) != len(xyzlist): if len(cedge) == 0: cedge = cface else: cedge = cedge.repeat(len(xyzlist), axis=0) if xyzlist: # sort by depth (furthest drawn first) z_segments_2d = sorted( ((self._zsortfunc(zs), np.column_stack([xs, ys]), fc, ec, idx) for idx, ((xs, ys, zs), fc, ec) in enumerate(zip(xyzlist, cface, cedge))), key=lambda x: x[0], reverse=True) _, segments_2d, self._facecolors2d, self._edgecolors2d, idxs = \ zip(*z_segments_2d) else: segments_2d = [] self._facecolors2d = np.empty((0, 4)) self._edgecolors2d = np.empty((0, 4)) idxs = [] if self._codes3d is not None: codes = [self._codes3d[idx] for idx in idxs] PolyCollection.set_verts_and_codes(self, segments_2d, codes) else: PolyCollection.set_verts(self, segments_2d, self._closed) if len(self._edgecolor3d) != len(cface): self._edgecolors2d = self._edgecolor3d # Return zorder value if self._sort_zpos is not None: zvec = np.array([[0], [0], [self._sort_zpos], [1]]) ztrans = proj3d._proj_transform_vec(zvec, self.axes.M) return ztrans[2][0] elif tzs.size > 0: # FIXME: Some results still don't look quite right. # In particular, examine contourf3d_demo2.py # with az = -54 and elev = -45. return np.min(tzs) else: return np.nan def set_facecolor(self, colors): # docstring inherited super().set_facecolor(colors) self._facecolor3d = PolyCollection.get_facecolor(self) def set_edgecolor(self, colors): # docstring inherited super().set_edgecolor(colors) self._edgecolor3d = PolyCollection.get_edgecolor(self) def set_alpha(self, alpha): # docstring inherited artist.Artist.set_alpha(self, alpha) try: self._facecolor3d = mcolors.to_rgba_array( self._facecolor3d, self._alpha) except (AttributeError, TypeError, IndexError): pass try: self._edgecolors = mcolors.to_rgba_array( self._edgecolor3d, self._alpha) except (AttributeError, TypeError, IndexError): pass self.stale = True def get_facecolor(self): return self._facecolors2d def get_edgecolor(self): return self._edgecolors2d def poly_collection_2d_to_3d(col, zs=0, zdir='z'): """Convert a PolyCollection to a Poly3DCollection object.""" segments_3d, codes = _paths_to_3d_segments_with_codes( col.get_paths(), zs, zdir) col.__class__ = Poly3DCollection col.set_verts_and_codes(segments_3d, codes) col.set_3d_properties() def juggle_axes(xs, ys, zs, zdir): """ Reorder coordinates so that 2D xs, ys can be plotted in the plane orthogonal to zdir. zdir is normally x, y or z. However, if zdir starts with a '-' it is interpreted as a compensation for rotate_axes. """ if zdir == 'x': return zs, xs, ys elif zdir == 'y': return xs, zs, ys elif zdir[0] == '-': return rotate_axes(xs, ys, zs, zdir) else: return xs, ys, zs def rotate_axes(xs, ys, zs, zdir): """ Reorder coordinates so that the axes are rotated with zdir along the original z axis. Prepending the axis with a '-' does the inverse transform, so zdir can be x, -x, y, -y, z or -z """ if zdir == 'x': return ys, zs, xs elif zdir == '-x': return zs, xs, ys elif zdir == 'y': return zs, xs, ys elif zdir == '-y': return ys, zs, xs else: return xs, ys, zs def _zalpha(colors, zs): """Modify the alphas of the color list according to depth.""" # FIXME: This only works well if the points for *zs* are well-spaced # in all three dimensions. Otherwise, at certain orientations, # the min and max zs are very close together. # Should really normalize against the viewing depth. if len(colors) == 0 or len(zs) == 0: return np.zeros((0, 4)) norm = Normalize(min(zs), max(zs)) sats = 1 - norm(zs) * 0.7 rgba = np.broadcast_to(mcolors.to_rgba_array(colors), (len(zs), 4)) return np.column_stack([rgba[:, :3], rgba[:, 3] * sats])