""" axes3d.py, original mplot3d version by John Porter Created: 23 Sep 2005 Parts fixed by Reinier Heeres Minor additions by Ben Axelrod Significant updates and revisions by Ben Root Module containing Axes3D, an object which can plot 3D objects on a 2D matplotlib figure. """ from collections import defaultdict import functools import inspect import itertools import math from numbers import Integral import textwrap import numpy as np from matplotlib import _api, cbook, docstring, _preprocess_data import matplotlib.artist as martist import matplotlib.axes as maxes import matplotlib.collections as mcoll import matplotlib.colors as mcolors import matplotlib.image as mimage import matplotlib.lines as mlines import matplotlib.patches as mpatches import matplotlib.scale as mscale import matplotlib.container as mcontainer import matplotlib.transforms as mtransforms from matplotlib.axes import Axes, rcParams from matplotlib.axes._base import _axis_method_wrapper, _process_plot_format from matplotlib.transforms import Bbox from matplotlib.tri.triangulation import Triangulation from . import art3d from . import proj3d from . import axis3d @docstring.interpd @cbook._define_aliases({ "xlim3d": ["xlim"], "ylim3d": ["ylim"], "zlim3d": ["zlim"]}) class Axes3D(Axes): """ 3D axes object. """ name = '3d' _axis_names = ("x", "y", "z") Axes._shared_axes["z"] = cbook.Grouper() def __init__( self, fig, rect=None, *args, azim=-60, elev=30, sharez=None, proj_type='persp', box_aspect=None, computed_zorder=True, **kwargs): """ Parameters ---------- fig : Figure The parent figure. rect : (float, float, float, float) The ``(left, bottom, width, height)`` axes position. azim : float, default: -60 Azimuthal viewing angle. elev : float, default: 30 Elevation viewing angle. sharez : Axes3D, optional Other axes to share z-limits with. proj_type : {'persp', 'ortho'} The projection type, default 'persp'. computed_zorder : bool, default: True If True, the draw order is computed based on the average position of the `.Artist`\\s along the view direction. Set to False if you want to manually control the order in which Artists are drawn on top of each other using their *zorder* attribute. This can be used for fine-tuning if the automatic order does not produce the desired result. Note however, that a manual zorder will only be correct for a limited view angle. If the figure is rotated by the user, it will look wrong from certain angles. auto_add_to_figure : bool, default: True Prior to Matplotlib 3.4 Axes3D would add themselves to their host Figure on init. Other Axes class do not do this. This behavior is deprecated in 3.4, the default will change to False in 3.5. The keyword will be undocumented and a non-False value will be an error in 3.6. **kwargs Other optional keyword arguments: %(Axes3D:kwdoc)s """ if rect is None: rect = [0.0, 0.0, 1.0, 1.0] self.initial_azim = azim self.initial_elev = elev self.set_proj_type(proj_type) self.computed_zorder = computed_zorder self.xy_viewLim = Bbox.unit() self.zz_viewLim = Bbox.unit() self.xy_dataLim = Bbox.unit() # z-limits are encoded in the x-component of the Bbox, y is un-used self.zz_dataLim = Bbox.unit() # inhibit autoscale_view until the axes are defined # they can't be defined until Axes.__init__ has been called self.view_init(self.initial_elev, self.initial_azim) self._sharez = sharez if sharez is not None: self._shared_axes["z"].join(self, sharez) self._adjustable = 'datalim' auto_add_to_figure = kwargs.pop('auto_add_to_figure', True) super().__init__( fig, rect, frameon=True, box_aspect=box_aspect, *args, **kwargs ) # Disable drawing of axes by base class super().set_axis_off() # Enable drawing of axes by Axes3D class self.set_axis_on() self.M = None # func used to format z -- fall back on major formatters self.fmt_zdata = None self.mouse_init() self.figure.canvas.callbacks._pickled_cids.update({ self.figure.canvas.mpl_connect( 'motion_notify_event', self._on_move), self.figure.canvas.mpl_connect( 'button_press_event', self._button_press), self.figure.canvas.mpl_connect( 'button_release_event', self._button_release), }) self.set_top_view() self.patch.set_linewidth(0) # Calculate the pseudo-data width and height pseudo_bbox = self.transLimits.inverted().transform([(0, 0), (1, 1)]) self._pseudo_w, self._pseudo_h = pseudo_bbox[1] - pseudo_bbox[0] # mplot3d currently manages its own spines and needs these turned off # for bounding box calculations self.spines[:].set_visible(False) if auto_add_to_figure: _api.warn_deprecated( "3.4", removal="3.6", message="Axes3D(fig) adding itself " "to the figure is deprecated since %(since)s. " "Pass the keyword argument auto_add_to_figure=False " "and use fig.add_axes(ax) to suppress this warning. " "The default value of auto_add_to_figure will change to " "False in mpl3.5 and True values will " "no longer work %(removal)s. This is consistent with " "other Axes classes.") fig.add_axes(self) def set_axis_off(self): self._axis3don = False self.stale = True def set_axis_on(self): self._axis3don = True self.stale = True def convert_zunits(self, z): """ For artists in an axes, if the zaxis has units support, convert *z* using zaxis unit type """ return self.zaxis.convert_units(z) def set_top_view(self): # this happens to be the right view for the viewing coordinates # moved up and to the left slightly to fit labels and axes xdwl = 0.95 / self.dist xdw = 0.9 / self.dist ydwl = 0.95 / self.dist ydw = 0.9 / self.dist # This is purposely using the 2D Axes's set_xlim and set_ylim, # because we are trying to place our viewing pane. super().set_xlim(-xdwl, xdw, auto=None) super().set_ylim(-ydwl, ydw, auto=None) def _init_axis(self): """Init 3D axes; overrides creation of regular X/Y axes.""" self.xaxis = axis3d.XAxis('x', self.xy_viewLim.intervalx, self.xy_dataLim.intervalx, self) self.yaxis = axis3d.YAxis('y', self.xy_viewLim.intervaly, self.xy_dataLim.intervaly, self) self.zaxis = axis3d.ZAxis('z', self.zz_viewLim.intervalx, self.zz_dataLim.intervalx, self) for ax in self.xaxis, self.yaxis, self.zaxis: ax.init3d() def get_zaxis(self): """Return the ``ZAxis`` (`~.axis3d.Axis`) instance.""" return self.zaxis get_zgridlines = _axis_method_wrapper("zaxis", "get_gridlines") get_zticklines = _axis_method_wrapper("zaxis", "get_ticklines") w_xaxis = _api.deprecated("3.1", alternative="xaxis", pending=True)( property(lambda self: self.xaxis)) w_yaxis = _api.deprecated("3.1", alternative="yaxis", pending=True)( property(lambda self: self.yaxis)) w_zaxis = _api.deprecated("3.1", alternative="zaxis", pending=True)( property(lambda self: self.zaxis)) def unit_cube(self, vals=None): minx, maxx, miny, maxy, minz, maxz = vals or self.get_w_lims() return [(minx, miny, minz), (maxx, miny, minz), (maxx, maxy, minz), (minx, maxy, minz), (minx, miny, maxz), (maxx, miny, maxz), (maxx, maxy, maxz), (minx, maxy, maxz)] def tunit_cube(self, vals=None, M=None): if M is None: M = self.M xyzs = self.unit_cube(vals) tcube = proj3d.proj_points(xyzs, M) return tcube def tunit_edges(self, vals=None, M=None): tc = self.tunit_cube(vals, M) edges = [(tc[0], tc[1]), (tc[1], tc[2]), (tc[2], tc[3]), (tc[3], tc[0]), (tc[0], tc[4]), (tc[1], tc[5]), (tc[2], tc[6]), (tc[3], tc[7]), (tc[4], tc[5]), (tc[5], tc[6]), (tc[6], tc[7]), (tc[7], tc[4])] return edges def set_aspect(self, aspect, adjustable=None, anchor=None, share=False): """ Set the aspect ratios. Axes 3D does not current support any aspect but 'auto' which fills the axes with the data limits. To simulate having equal aspect in data space, set the ratio of your data limits to match the value of `.get_box_aspect`. To control box aspect ratios use `~.Axes3D.set_box_aspect`. Parameters ---------- aspect : {'auto'} Possible values: ========= ================================================== value description ========= ================================================== 'auto' automatic; fill the position rectangle with data. ========= ================================================== adjustable : None Currently ignored by Axes3D If not *None*, this defines which parameter will be adjusted to meet the required aspect. See `.set_adjustable` for further details. anchor : None or str or 2-tuple of float, optional If not *None*, this defines where the Axes will be drawn if there is extra space due to aspect constraints. The most common way to to specify the anchor are abbreviations of cardinal directions: ===== ===================== value description ===== ===================== 'C' centered 'SW' lower left corner 'S' middle of bottom edge 'SE' lower right corner etc. ===== ===================== See `~.Axes.set_anchor` for further details. share : bool, default: False If ``True``, apply the settings to all shared Axes. See Also -------- mpl_toolkits.mplot3d.axes3d.Axes3D.set_box_aspect """ if aspect != 'auto': raise NotImplementedError( "Axes3D currently only supports the aspect argument " f"'auto'. You passed in {aspect!r}." ) super().set_aspect( aspect, adjustable=adjustable, anchor=anchor, share=share) def set_box_aspect(self, aspect, *, zoom=1): """ Set the axes box aspect. The box aspect is the ratio of height to width in display units for each face of the box when viewed perpendicular to that face. This is not to be confused with the data aspect (which for Axes3D is always 'auto'). The default ratios are 4:4:3 (x:y:z). To simulate having equal aspect in data space, set the box aspect to match your data range in each dimension. *zoom* controls the overall size of the Axes3D in the figure. Parameters ---------- aspect : 3-tuple of floats or None Changes the physical dimensions of the Axes3D, such that the ratio of the axis lengths in display units is x:y:z. If None, defaults to 4:4:3 zoom : float Control overall size of the Axes3D in the figure. """ if aspect is None: aspect = np.asarray((4, 4, 3), dtype=float) else: orig_aspect = aspect aspect = np.asarray(aspect, dtype=float) if aspect.shape != (3,): raise ValueError( "You must pass a 3-tuple that can be cast to floats. " f"You passed {orig_aspect!r}" ) # default scale tuned to match the mpl32 appearance. aspect *= 1.8294640721620434 * zoom / np.linalg.norm(aspect) self._box_aspect = aspect self.stale = True def apply_aspect(self, position=None): if position is None: position = self.get_position(original=True) # in the superclass, we would go through and actually deal with axis # scales and box/datalim. Those are all irrelevant - all we need to do # is make sure our coordinate system is square. trans = self.get_figure().transSubfigure bb = mtransforms.Bbox.from_bounds(0, 0, 1, 1).transformed(trans) # this is the physical aspect of the panel (or figure): fig_aspect = bb.height / bb.width box_aspect = 1 pb = position.frozen() pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect) self._set_position(pb1.anchored(self.get_anchor(), pb), 'active') @martist.allow_rasterization def draw(self, renderer): self._unstale_viewLim() # draw the background patch self.patch.draw(renderer) self._frameon = False # first, set the aspect # this is duplicated from `axes._base._AxesBase.draw` # but must be called before any of the artist are drawn as # it adjusts the view limits and the size of the bounding box # of the axes locator = self.get_axes_locator() if locator: pos = locator(self, renderer) self.apply_aspect(pos) else: self.apply_aspect() # add the projection matrix to the renderer self.M = self.get_proj() props3d = { # To raise a deprecation, we need to wrap the attribute in a # function, but binding that to an instance does not work, as you # would end up with an instance-specific method. Properties are # class-level attributes which *are* functions, so we do that # instead. # This dictionary comprehension creates deprecated properties for # the attributes listed below, and they are temporarily attached to # the _class_ in the `_setattr_cm` call. These can both be removed # once the deprecation expires name: _api.deprecated('3.4', name=name, alternative=f'self.axes.{name}')( property(lambda self, _value=getattr(self, name): _value)) for name in ['M', 'vvec', 'eye', 'get_axis_position'] } with cbook._setattr_cm(type(renderer), **props3d): def do_3d_projection(artist): """ Call `do_3d_projection` on an *artist*, and warn if passing *renderer*. Attempt to bind the empty signature first, so external Artists can avoid the deprecation warning if they support the new calling convention. """ try: signature = inspect.signature(artist.do_3d_projection) signature.bind() # ValueError if `inspect.signature` cannot provide a signature # and TypeError if the binding fails or the object does not # appear to be callable - the next call will then re-raise. except (ValueError, TypeError): _api.warn_deprecated( "3.4", message="The 'renderer' parameter of " "do_3d_projection() was deprecated in Matplotlib " "%(since)s and will be removed %(removal)s.") return artist.do_3d_projection(renderer) else: # Call this directly once the deprecation period expires. return artist.do_3d_projection() collections_and_patches = ( artist for artist in self._children if isinstance(artist, (mcoll.Collection, mpatches.Patch))) if self.computed_zorder: # Calculate projection of collections and patches and zorder # them. Make sure they are drawn above the grids. zorder_offset = max(axis.get_zorder() for axis in self._get_axis_list()) + 1 collection_zorder = patch_zorder = zorder_offset for artist in sorted(collections_and_patches, key=do_3d_projection, reverse=True): if isinstance(artist, mcoll.Collection): artist.zorder = collection_zorder collection_zorder += 1 elif isinstance(artist, mpatches.Patch): artist.zorder = patch_zorder patch_zorder += 1 else: for artist in collections_and_patches: artist.do_3d_projection() if self._axis3don: # Draw panes first for axis in self._get_axis_list(): axis.draw_pane(renderer) # Then axes for axis in self._get_axis_list(): axis.draw(renderer) # Then rest super().draw(renderer) def get_axis_position(self): vals = self.get_w_lims() tc = self.tunit_cube(vals, self.M) xhigh = tc[1][2] > tc[2][2] yhigh = tc[3][2] > tc[2][2] zhigh = tc[0][2] > tc[2][2] return xhigh, yhigh, zhigh def _unit_change_handler(self, axis_name, event=None): # docstring inherited if event is None: # Allow connecting `self._unit_change_handler(name)` return functools.partial( self._unit_change_handler, axis_name, event=object()) _api.check_in_list(self._get_axis_map(), axis_name=axis_name) self.relim() self._request_autoscale_view(scalex=(axis_name == "x"), scaley=(axis_name == "y"), scalez=(axis_name == "z")) def update_datalim(self, xys, **kwargs): pass def get_autoscale_on(self): # docstring inherited return super().get_autoscale_on() and self.get_autoscalez_on() def get_autoscalez_on(self): """Return whether the z-axis is autoscaled.""" return self._autoscaleZon def set_autoscale_on(self, b): # docstring inherited super().set_autoscale_on(b) self.set_autoscalez_on(b) def set_autoscalez_on(self, b): """ Set whether the z-axis is autoscaled on the next draw or call to `.Axes.autoscale_view`. Parameters ---------- b : bool """ self._autoscaleZon = b def set_xmargin(self, m): # docstring inherited scalez = self._stale_viewlims["z"] super().set_xmargin(m) # Superclass is 2D and will call _request_autoscale_view with defaults # for unknown Axis, which would be scalez=True, but it shouldn't be for # this call, so restore it. self._stale_viewlims["z"] = scalez def set_ymargin(self, m): # docstring inherited scalez = self._stale_viewlims["z"] super().set_ymargin(m) # Superclass is 2D and will call _request_autoscale_view with defaults # for unknown Axis, which would be scalez=True, but it shouldn't be for # this call, so restore it. self._stale_viewlims["z"] = scalez def set_zmargin(self, m): """ Set padding of Z data limits prior to autoscaling. *m* times the data interval will be added to each end of that interval before it is used in autoscaling. accepts: float in range 0 to 1 """ if m < 0 or m > 1: raise ValueError("margin must be in range 0 to 1") self._zmargin = m self._request_autoscale_view(scalex=False, scaley=False, scalez=True) self.stale = True def margins(self, *margins, x=None, y=None, z=None, tight=True): """ Convenience method to set or retrieve autoscaling margins. Call signatures:: margins() returns xmargin, ymargin, zmargin :: margins(margin) margins(xmargin, ymargin, zmargin) margins(x=xmargin, y=ymargin, z=zmargin) margins(..., tight=False) All forms above set the xmargin, ymargin and zmargin parameters. All keyword parameters are optional. A single positional argument specifies xmargin, ymargin and zmargin. Passing both positional and keyword arguments for xmargin, ymargin, and/or zmargin is invalid. The *tight* parameter is passed to :meth:`autoscale_view`, which is executed after a margin is changed; the default here is *True*, on the assumption that when margins are specified, no additional padding to match tick marks is usually desired. Setting *tight* to *None* will preserve the previous setting. Specifying any margin changes only the autoscaling; for example, if *xmargin* is not None, then *xmargin* times the X data interval will be added to each end of that interval before it is used in autoscaling. """ if margins and x is not None and y is not None and z is not None: raise TypeError('Cannot pass both positional and keyword ' 'arguments for x, y, and/or z.') elif len(margins) == 1: x = y = z = margins[0] elif len(margins) == 3: x, y, z = margins elif margins: raise TypeError('Must pass a single positional argument for all ' 'margins, or one for each margin (x, y, z).') if x is None and y is None and z is None: if tight is not True: _api.warn_external(f'ignoring tight={tight!r} in get mode') return self._xmargin, self._ymargin, self._zmargin if x is not None: self.set_xmargin(x) if y is not None: self.set_ymargin(y) if z is not None: self.set_zmargin(z) self.autoscale_view( tight=tight, scalex=(x is not None), scaley=(y is not None), scalez=(z is not None) ) def autoscale(self, enable=True, axis='both', tight=None): """ Convenience method for simple axis view autoscaling. See :meth:`matplotlib.axes.Axes.autoscale` for full explanation. Note that this function behaves the same, but for all three axes. Therefore, 'z' can be passed for *axis*, and 'both' applies to all three axes. """ if enable is None: scalex = True scaley = True scalez = True else: if axis in ['x', 'both']: self._autoscaleXon = scalex = bool(enable) else: scalex = False if axis in ['y', 'both']: self._autoscaleYon = scaley = bool(enable) else: scaley = False if axis in ['z', 'both']: self._autoscaleZon = scalez = bool(enable) else: scalez = False self._request_autoscale_view(tight=tight, scalex=scalex, scaley=scaley, scalez=scalez) def auto_scale_xyz(self, X, Y, Z=None, had_data=None): # This updates the bounding boxes as to keep a record as to what the # minimum sized rectangular volume holds the data. if np.shape(X) == np.shape(Y): self.xy_dataLim.update_from_data_xy( np.column_stack([np.ravel(X), np.ravel(Y)]), not had_data) else: self.xy_dataLim.update_from_data_x(X, not had_data) self.xy_dataLim.update_from_data_y(Y, not had_data) if Z is not None: self.zz_dataLim.update_from_data_x(Z, not had_data) # Let autoscale_view figure out how to use this data. self.autoscale_view() def autoscale_view(self, tight=None, scalex=True, scaley=True, scalez=True): """ Autoscale the view limits using the data limits. See :meth:`matplotlib.axes.Axes.autoscale_view` for documentation. Note that this function applies to the 3D axes, and as such adds the *scalez* to the function arguments. """ # This method looks at the rectangular volume (see above) # of data and decides how to scale the view portal to fit it. if tight is None: _tight = self._tight if not _tight: # if image data only just use the datalim for artist in self._children: if isinstance(artist, mimage.AxesImage): _tight = True elif isinstance(artist, (mlines.Line2D, mpatches.Patch)): _tight = False break else: _tight = self._tight = bool(tight) if scalex and self._autoscaleXon: self._shared_axes["x"].clean() x0, x1 = self.xy_dataLim.intervalx xlocator = self.xaxis.get_major_locator() x0, x1 = xlocator.nonsingular(x0, x1) if self._xmargin > 0: delta = (x1 - x0) * self._xmargin x0 -= delta x1 += delta if not _tight: x0, x1 = xlocator.view_limits(x0, x1) self.set_xbound(x0, x1) if scaley and self._autoscaleYon: self._shared_axes["y"].clean() y0, y1 = self.xy_dataLim.intervaly ylocator = self.yaxis.get_major_locator() y0, y1 = ylocator.nonsingular(y0, y1) if self._ymargin > 0: delta = (y1 - y0) * self._ymargin y0 -= delta y1 += delta if not _tight: y0, y1 = ylocator.view_limits(y0, y1) self.set_ybound(y0, y1) if scalez and self._autoscaleZon: self._shared_axes["z"].clean() z0, z1 = self.zz_dataLim.intervalx zlocator = self.zaxis.get_major_locator() z0, z1 = zlocator.nonsingular(z0, z1) if self._zmargin > 0: delta = (z1 - z0) * self._zmargin z0 -= delta z1 += delta if not _tight: z0, z1 = zlocator.view_limits(z0, z1) self.set_zbound(z0, z1) def get_w_lims(self): """Get 3D world limits.""" minx, maxx = self.get_xlim3d() miny, maxy = self.get_ylim3d() minz, maxz = self.get_zlim3d() return minx, maxx, miny, maxy, minz, maxz def set_xlim3d(self, left=None, right=None, emit=True, auto=False, *, xmin=None, xmax=None): """ Set 3D x limits. See :meth:`matplotlib.axes.Axes.set_xlim` for full documentation. """ if right is None and np.iterable(left): left, right = left if xmin is not None: if left is not None: raise TypeError('Cannot pass both `xmin` and `left`') left = xmin if xmax is not None: if right is not None: raise TypeError('Cannot pass both `xmax` and `right`') right = xmax self._process_unit_info([("x", (left, right))], convert=False) left = self._validate_converted_limits(left, self.convert_xunits) right = self._validate_converted_limits(right, self.convert_xunits) old_left, old_right = self.get_xlim() if left is None: left = old_left if right is None: right = old_right if left == right: _api.warn_external( f"Attempting to set identical left == right == {left} results " f"in singular transformations; automatically expanding.") reverse = left > right left, right = self.xaxis.get_major_locator().nonsingular(left, right) left, right = self.xaxis.limit_range_for_scale(left, right) # cast to bool to avoid bad interaction between python 3.8 and np.bool_ left, right = sorted([left, right], reverse=bool(reverse)) self.xy_viewLim.intervalx = (left, right) # Mark viewlims as no longer stale without triggering an autoscale. for ax in self._shared_axes["x"].get_siblings(self): ax._stale_viewlims["x"] = False if auto is not None: self._autoscaleXon = bool(auto) if emit: self.callbacks.process('xlim_changed', self) # Call all of the other x-axes that are shared with this one for other in self._shared_axes["x"].get_siblings(self): if other is not self: other.set_xlim(self.xy_viewLim.intervalx, emit=False, auto=auto) if other.figure != self.figure: other.figure.canvas.draw_idle() self.stale = True return left, right def set_ylim3d(self, bottom=None, top=None, emit=True, auto=False, *, ymin=None, ymax=None): """ Set 3D y limits. See :meth:`matplotlib.axes.Axes.set_ylim` for full documentation. """ if top is None and np.iterable(bottom): bottom, top = bottom if ymin is not None: if bottom is not None: raise TypeError('Cannot pass both `ymin` and `bottom`') bottom = ymin if ymax is not None: if top is not None: raise TypeError('Cannot pass both `ymax` and `top`') top = ymax self._process_unit_info([("y", (bottom, top))], convert=False) bottom = self._validate_converted_limits(bottom, self.convert_yunits) top = self._validate_converted_limits(top, self.convert_yunits) old_bottom, old_top = self.get_ylim() if bottom is None: bottom = old_bottom if top is None: top = old_top if bottom == top: _api.warn_external( f"Attempting to set identical bottom == top == {bottom} " f"results in singular transformations; automatically " f"expanding.") swapped = bottom > top bottom, top = self.yaxis.get_major_locator().nonsingular(bottom, top) bottom, top = self.yaxis.limit_range_for_scale(bottom, top) if swapped: bottom, top = top, bottom self.xy_viewLim.intervaly = (bottom, top) # Mark viewlims as no longer stale without triggering an autoscale. for ax in self._shared_axes["y"].get_siblings(self): ax._stale_viewlims["y"] = False if auto is not None: self._autoscaleYon = bool(auto) if emit: self.callbacks.process('ylim_changed', self) # Call all of the other y-axes that are shared with this one for other in self._shared_axes["y"].get_siblings(self): if other is not self: other.set_ylim(self.xy_viewLim.intervaly, emit=False, auto=auto) if other.figure != self.figure: other.figure.canvas.draw_idle() self.stale = True return bottom, top def set_zlim3d(self, bottom=None, top=None, emit=True, auto=False, *, zmin=None, zmax=None): """ Set 3D z limits. See :meth:`matplotlib.axes.Axes.set_ylim` for full documentation """ if top is None and np.iterable(bottom): bottom, top = bottom if zmin is not None: if bottom is not None: raise TypeError('Cannot pass both `zmin` and `bottom`') bottom = zmin if zmax is not None: if top is not None: raise TypeError('Cannot pass both `zmax` and `top`') top = zmax self._process_unit_info([("z", (bottom, top))], convert=False) bottom = self._validate_converted_limits(bottom, self.convert_zunits) top = self._validate_converted_limits(top, self.convert_zunits) old_bottom, old_top = self.get_zlim() if bottom is None: bottom = old_bottom if top is None: top = old_top if bottom == top: _api.warn_external( f"Attempting to set identical bottom == top == {bottom} " f"results in singular transformations; automatically " f"expanding.") swapped = bottom > top bottom, top = self.zaxis.get_major_locator().nonsingular(bottom, top) bottom, top = self.zaxis.limit_range_for_scale(bottom, top) if swapped: bottom, top = top, bottom self.zz_viewLim.intervalx = (bottom, top) # Mark viewlims as no longer stale without triggering an autoscale. for ax in self._shared_axes["z"].get_siblings(self): ax._stale_viewlims["z"] = False if auto is not None: self._autoscaleZon = bool(auto) if emit: self.callbacks.process('zlim_changed', self) # Call all of the other y-axes that are shared with this one for other in self._shared_axes["z"].get_siblings(self): if other is not self: other.set_zlim(self.zz_viewLim.intervalx, emit=False, auto=auto) if other.figure != self.figure: other.figure.canvas.draw_idle() self.stale = True return bottom, top def get_xlim3d(self): return tuple(self.xy_viewLim.intervalx) get_xlim3d.__doc__ = maxes.Axes.get_xlim.__doc__ def get_ylim3d(self): return tuple(self.xy_viewLim.intervaly) get_ylim3d.__doc__ = maxes.Axes.get_ylim.__doc__ def get_zlim3d(self): """Get 3D z limits.""" return tuple(self.zz_viewLim.intervalx) def get_zscale(self): """ Return the zaxis scale string %s """ % (", ".join(mscale.get_scale_names())) return self.zaxis.get_scale() # We need to slightly redefine these to pass scalez=False # to their calls of autoscale_view. def set_xscale(self, value, **kwargs): self.xaxis._set_scale(value, **kwargs) self.autoscale_view(scaley=False, scalez=False) self._update_transScale() self.stale = True def set_yscale(self, value, **kwargs): self.yaxis._set_scale(value, **kwargs) self.autoscale_view(scalex=False, scalez=False) self._update_transScale() self.stale = True def set_zscale(self, value, **kwargs): self.zaxis._set_scale(value, **kwargs) self.autoscale_view(scalex=False, scaley=False) self._update_transScale() self.stale = True set_xscale.__doc__, set_yscale.__doc__, set_zscale.__doc__ = map( """ Set the {}-axis scale. Parameters ---------- value : {{"linear"}} The axis scale type to apply. 3D axes currently only support linear scales; other scales yield nonsensical results. **kwargs Keyword arguments are nominally forwarded to the scale class, but none of them is applicable for linear scales. """.format, ["x", "y", "z"]) get_zticks = _axis_method_wrapper("zaxis", "get_ticklocs") set_zticks = _axis_method_wrapper("zaxis", "set_ticks") get_zmajorticklabels = _axis_method_wrapper("zaxis", "get_majorticklabels") get_zminorticklabels = _axis_method_wrapper("zaxis", "get_minorticklabels") get_zticklabels = _axis_method_wrapper("zaxis", "get_ticklabels") set_zticklabels = _axis_method_wrapper( "zaxis", "_set_ticklabels", doc_sub={"Axis.set_ticks": "Axes3D.set_zticks"}) zaxis_date = _axis_method_wrapper("zaxis", "axis_date") if zaxis_date.__doc__: zaxis_date.__doc__ += textwrap.dedent(""" Notes ----- This function is merely provided for completeness, but 3D axes do not support dates for ticks, and so this may not work as expected. """) def clabel(self, *args, **kwargs): """Currently not implemented for 3D axes, and returns *None*.""" return None def view_init(self, elev=None, azim=None, vertical_axis="z"): """ Set the elevation and azimuth of the axes in degrees (not radians). This can be used to rotate the axes programmatically. Parameters ---------- elev : float, default: None The elevation angle in the vertical plane in degrees. If None then the initial value as specified in the `Axes3D` constructor is used. azim : float, default: None The azimuth angle in the horizontal plane in degrees. If None then the initial value as specified in the `Axes3D` constructor is used. vertical_axis : {"z", "x", "y"}, default: "z" The axis to align vertically. *azim* rotates about this axis. """ self.dist = 10 if elev is None: self.elev = self.initial_elev else: self.elev = elev if azim is None: self.azim = self.initial_azim else: self.azim = azim self._vertical_axis = _api.check_getitem( dict(x=0, y=1, z=2), vertical_axis=vertical_axis ) def set_proj_type(self, proj_type): """ Set the projection type. Parameters ---------- proj_type : {'persp', 'ortho'} """ self._projection = _api.check_getitem({ 'persp': proj3d.persp_transformation, 'ortho': proj3d.ortho_transformation, }, proj_type=proj_type) def _roll_to_vertical(self, arr): """Roll arrays to match the different vertical axis.""" return np.roll(arr, self._vertical_axis - 2) def get_proj(self): """Create the projection matrix from the current viewing position.""" # Transform to uniform world coordinates 0-1, 0-1, 0-1 box_aspect = self._roll_to_vertical(self._box_aspect) worldM = proj3d.world_transformation( *self.get_xlim3d(), *self.get_ylim3d(), *self.get_zlim3d(), pb_aspect=box_aspect, ) # Look into the middle of the new coordinates: R = 0.5 * box_aspect # elev stores the elevation angle in the z plane # azim stores the azimuth angle in the x,y plane elev_rad = np.deg2rad(self.elev) azim_rad = np.deg2rad(self.azim) # Coordinates for a point that rotates around the box of data. # p0, p1 corresponds to rotating the box only around the # vertical axis. # p2 corresponds to rotating the box only around the horizontal # axis. p0 = np.cos(elev_rad) * np.cos(azim_rad) p1 = np.cos(elev_rad) * np.sin(azim_rad) p2 = np.sin(elev_rad) # When changing vertical axis the coordinates changes as well. # Roll the values to get the same behaviour as the default: ps = self._roll_to_vertical([p0, p1, p2]) # The coordinates for the eye viewing point. The eye is looking # towards the middle of the box of data from a distance: eye = R + self.dist * ps # TODO: Is this being used somewhere? Can it be removed? self.eye = eye self.vvec = R - eye self.vvec = self.vvec / np.linalg.norm(self.vvec) # Define which axis should be vertical. A negative value # indicates the plot is upside down and therefore the values # have been reversed: V = np.zeros(3) V[self._vertical_axis] = -1 if abs(elev_rad) > 0.5 * np.pi else 1 viewM = proj3d.view_transformation(eye, R, V) projM = self._projection(-self.dist, self.dist) M0 = np.dot(viewM, worldM) M = np.dot(projM, M0) return M def mouse_init(self, rotate_btn=1, zoom_btn=3): """ Set the mouse buttons for 3D rotation and zooming. Parameters ---------- rotate_btn : int or list of int, default: 1 The mouse button or buttons to use for 3D rotation of the axes. zoom_btn : int or list of int, default: 3 The mouse button or buttons to use to zoom the 3D axes. """ self.button_pressed = None # coerce scalars into array-like, then convert into # a regular list to avoid comparisons against None # which breaks in recent versions of numpy. self._rotate_btn = np.atleast_1d(rotate_btn).tolist() self._zoom_btn = np.atleast_1d(zoom_btn).tolist() def disable_mouse_rotation(self): """Disable mouse buttons for 3D rotation and zooming.""" self.mouse_init(rotate_btn=[], zoom_btn=[]) def can_zoom(self): """ Return whether this axes supports the zoom box button functionality. 3D axes objects do not use the zoom box button. """ return False def can_pan(self): """ Return whether this axes supports the pan/zoom button functionality. 3D axes objects do not use the pan/zoom button. """ return False def cla(self): # docstring inherited. super().cla() self.zaxis.clear() if self._sharez is not None: self.zaxis.major = self._sharez.zaxis.major self.zaxis.minor = self._sharez.zaxis.minor z0, z1 = self._sharez.get_zlim() self.set_zlim(z0, z1, emit=False, auto=None) self.zaxis._set_scale(self._sharez.zaxis.get_scale()) else: self.zaxis._set_scale('linear') try: self.set_zlim(0, 1) except TypeError: pass self._autoscaleZon = True if self._projection is proj3d.ortho_transformation: self._zmargin = rcParams['axes.zmargin'] else: self._zmargin = 0. self.grid(rcParams['axes3d.grid']) def _button_press(self, event): if event.inaxes == self: self.button_pressed = event.button self.sx, self.sy = event.xdata, event.ydata toolbar = getattr(self.figure.canvas, "toolbar") if toolbar and toolbar._nav_stack() is None: self.figure.canvas.toolbar.push_current() def _button_release(self, event): self.button_pressed = None toolbar = getattr(self.figure.canvas, "toolbar") if toolbar: self.figure.canvas.toolbar.push_current() def _get_view(self): # docstring inherited return (self.get_xlim(), self.get_ylim(), self.get_zlim(), self.elev, self.azim) def _set_view(self, view): # docstring inherited xlim, ylim, zlim, elev, azim = view self.set(xlim=xlim, ylim=ylim, zlim=zlim) self.elev = elev self.azim = azim def format_zdata(self, z): """ Return *z* string formatted. This function will use the :attr:`fmt_zdata` attribute if it is callable, else will fall back on the zaxis major formatter """ try: return self.fmt_zdata(z) except (AttributeError, TypeError): func = self.zaxis.get_major_formatter().format_data_short val = func(z) return val def format_coord(self, xd, yd): """ Given the 2D view coordinates attempt to guess a 3D coordinate. Looks for the nearest edge to the point and then assumes that the point is at the same z location as the nearest point on the edge. """ if self.M is None: return '' if self.button_pressed in self._rotate_btn: # ignore xd and yd and display angles instead return (f"azimuth={self.azim:.0f}\N{DEGREE SIGN}, " f"elevation={self.elev:.0f}\N{DEGREE SIGN}" ).replace("-", "\N{MINUS SIGN}") # nearest edge p0, p1 = min(self.tunit_edges(), key=lambda edge: proj3d._line2d_seg_dist( edge[0], edge[1], (xd, yd))) # scale the z value to match x0, y0, z0 = p0 x1, y1, z1 = p1 d0 = np.hypot(x0-xd, y0-yd) d1 = np.hypot(x1-xd, y1-yd) dt = d0+d1 z = d1/dt * z0 + d0/dt * z1 x, y, z = proj3d.inv_transform(xd, yd, z, self.M) xs = self.format_xdata(x) ys = self.format_ydata(y) zs = self.format_zdata(z) return 'x=%s, y=%s, z=%s' % (xs, ys, zs) def _on_move(self, event): """ Mouse moving. By default, button-1 rotates and button-3 zooms; these buttons can be modified via `mouse_init`. """ if not self.button_pressed: return if self.M is None: return x, y = event.xdata, event.ydata # In case the mouse is out of bounds. if x is None: return dx, dy = x - self.sx, y - self.sy w = self._pseudo_w h = self._pseudo_h self.sx, self.sy = x, y # Rotation if self.button_pressed in self._rotate_btn: # rotate viewing point # get the x and y pixel coords if dx == 0 and dy == 0: return self.elev = art3d._norm_angle(self.elev - (dy/h)*180) self.azim = art3d._norm_angle(self.azim - (dx/w)*180) self.get_proj() self.stale = True self.figure.canvas.draw_idle() elif self.button_pressed == 2: # pan view # get the x and y pixel coords if dx == 0 and dy == 0: return minx, maxx, miny, maxy, minz, maxz = self.get_w_lims() dx = 1-((w - dx)/w) dy = 1-((h - dy)/h) elev, azim = np.deg2rad(self.elev), np.deg2rad(self.azim) # project xv, yv, zv -> xw, yw, zw dxx = (maxx-minx)*(dy*np.sin(elev)*np.cos(azim) + dx*np.sin(azim)) dyy = (maxy-miny)*(-dx*np.cos(azim) + dy*np.sin(elev)*np.sin(azim)) dzz = (maxz-minz)*(-dy*np.cos(elev)) # pan self.set_xlim3d(minx + dxx, maxx + dxx) self.set_ylim3d(miny + dyy, maxy + dyy) self.set_zlim3d(minz + dzz, maxz + dzz) self.get_proj() self.figure.canvas.draw_idle() # Zoom elif self.button_pressed in self._zoom_btn: # zoom view # hmmm..this needs some help from clipping.... minx, maxx, miny, maxy, minz, maxz = self.get_w_lims() df = 1-((h - dy)/h) dx = (maxx-minx)*df dy = (maxy-miny)*df dz = (maxz-minz)*df self.set_xlim3d(minx - dx, maxx + dx) self.set_ylim3d(miny - dy, maxy + dy) self.set_zlim3d(minz - dz, maxz + dz) self.get_proj() self.figure.canvas.draw_idle() def set_zlabel(self, zlabel, fontdict=None, labelpad=None, **kwargs): """ Set zlabel. See doc for `.set_ylabel` for description. """ if labelpad is not None: self.zaxis.labelpad = labelpad return self.zaxis.set_label_text(zlabel, fontdict, **kwargs) def get_zlabel(self): """ Get the z-label text string. """ label = self.zaxis.get_label() return label.get_text() # Axes rectangle characteristics def get_frame_on(self): """Get whether the 3D axes panels are drawn.""" return self._frameon def set_frame_on(self, b): """ Set whether the 3D axes panels are drawn. Parameters ---------- b : bool """ self._frameon = bool(b) self.stale = True @_api.rename_parameter("3.5", "b", "visible") def grid(self, visible=True, **kwargs): """ Set / unset 3D grid. .. note:: Currently, this function does not behave the same as :meth:`matplotlib.axes.Axes.grid`, but it is intended to eventually support that behavior. """ # TODO: Operate on each axes separately if len(kwargs): visible = True self._draw_grid = visible self.stale = True def locator_params(self, axis='both', tight=None, **kwargs): """ Convenience method for controlling tick locators. See :meth:`matplotlib.axes.Axes.locator_params` for full documentation. Note that this is for Axes3D objects, therefore, setting *axis* to 'both' will result in the parameters being set for all three axes. Also, *axis* can also take a value of 'z' to apply parameters to the z axis. """ _x = axis in ['x', 'both'] _y = axis in ['y', 'both'] _z = axis in ['z', 'both'] if _x: self.xaxis.get_major_locator().set_params(**kwargs) if _y: self.yaxis.get_major_locator().set_params(**kwargs) if _z: self.zaxis.get_major_locator().set_params(**kwargs) self._request_autoscale_view(tight=tight, scalex=_x, scaley=_y, scalez=_z) def tick_params(self, axis='both', **kwargs): """ Convenience method for changing the appearance of ticks and tick labels. See :meth:`matplotlib.axes.Axes.tick_params` for more complete documentation. The only difference is that setting *axis* to 'both' will mean that the settings are applied to all three axes. Also, the *axis* parameter also accepts a value of 'z', which would mean to apply to only the z-axis. Also, because of how Axes3D objects are drawn very differently from regular 2D axes, some of these settings may have ambiguous meaning. For simplicity, the 'z' axis will accept settings as if it was like the 'y' axis. .. note:: Axes3D currently ignores some of these settings. """ _api.check_in_list(['x', 'y', 'z', 'both'], axis=axis) if axis in ['x', 'y', 'both']: super().tick_params(axis, **kwargs) if axis in ['z', 'both']: zkw = dict(kwargs) zkw.pop('top', None) zkw.pop('bottom', None) zkw.pop('labeltop', None) zkw.pop('labelbottom', None) self.zaxis.set_tick_params(**zkw) # data limits, ticks, tick labels, and formatting def invert_zaxis(self): """ Invert the z-axis. """ bottom, top = self.get_zlim() self.set_zlim(top, bottom, auto=None) def zaxis_inverted(self): """ Returns True if the z-axis is inverted. """ bottom, top = self.get_zlim() return top < bottom def get_zbound(self): """ Return the lower and upper z-axis bounds, in increasing order. """ bottom, top = self.get_zlim() if bottom < top: return bottom, top else: return top, bottom def set_zbound(self, lower=None, upper=None): """ Set the lower and upper numerical bounds of the z-axis. This method will honor axes inversion regardless of parameter order. It will not change the autoscaling setting (`.get_autoscalez_on()`). """ if upper is None and np.iterable(lower): lower, upper = lower old_lower, old_upper = self.get_zbound() if lower is None: lower = old_lower if upper is None: upper = old_upper self.set_zlim(sorted((lower, upper), reverse=bool(self.zaxis_inverted())), auto=None) def text(self, x, y, z, s, zdir=None, **kwargs): """ Add text to the plot. kwargs will be passed on to Axes.text, except for the *zdir* keyword, which sets the direction to be used as the z direction. """ text = super().text(x, y, s, **kwargs) art3d.text_2d_to_3d(text, z, zdir) return text text3D = text text2D = Axes.text def plot(self, xs, ys, *args, zdir='z', **kwargs): """ Plot 2D or 3D data. Parameters ---------- xs : 1D array-like x coordinates of vertices. ys : 1D array-like y coordinates of vertices. zs : float or 1D array-like z coordinates of vertices; either one for all points or one for each point. zdir : {'x', 'y', 'z'}, default: 'z' When plotting 2D data, the direction to use as z ('x', 'y' or 'z'). **kwargs Other arguments are forwarded to `matplotlib.axes.Axes.plot`. """ had_data = self.has_data() # `zs` can be passed positionally or as keyword; checking whether # args[0] is a string matches the behavior of 2D `plot` (via # `_process_plot_var_args`). if args and not isinstance(args[0], str): zs, *args = args if 'zs' in kwargs: raise TypeError("plot() for multiple values for argument 'z'") else: zs = kwargs.pop('zs', 0) # Match length zs = np.broadcast_to(zs, np.shape(xs)) lines = super().plot(xs, ys, *args, **kwargs) for line in lines: art3d.line_2d_to_3d(line, zs=zs, zdir=zdir) xs, ys, zs = art3d.juggle_axes(xs, ys, zs, zdir) self.auto_scale_xyz(xs, ys, zs, had_data) return lines plot3D = plot @_api.delete_parameter("3.4", "args", alternative="kwargs") def plot_surface(self, X, Y, Z, *args, norm=None, vmin=None, vmax=None, lightsource=None, **kwargs): """ Create a surface plot. By default it will be colored in shades of a solid color, but it also supports colormapping by supplying the *cmap* argument. .. note:: The *rcount* and *ccount* kwargs, which both default to 50, determine the maximum number of samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these numbers of points. .. note:: To maximize rendering speed consider setting *rstride* and *cstride* to divisors of the number of rows minus 1 and columns minus 1 respectively. For example, given 51 rows rstride can be any of the divisors of 50. Similarly, a setting of *rstride* and *cstride* equal to 1 (or *rcount* and *ccount* equal the number of rows and columns) can use the optimized path. Parameters ---------- X, Y, Z : 2D arrays Data values. rcount, ccount : int Maximum number of samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these numbers of points. Defaults to 50. rstride, cstride : int Downsampling stride in each direction. These arguments are mutually exclusive with *rcount* and *ccount*. If only one of *rstride* or *cstride* is set, the other defaults to 10. 'classic' mode uses a default of ``rstride = cstride = 10`` instead of the new default of ``rcount = ccount = 50``. color : color-like Color of the surface patches. cmap : Colormap Colormap of the surface patches. facecolors : array-like of colors. Colors of each individual patch. norm : Normalize Normalization for the colormap. vmin, vmax : float Bounds for the normalization. shade : bool, default: True Whether to shade the facecolors. Shading is always disabled when *cmap* is specified. lightsource : `~matplotlib.colors.LightSource` The lightsource to use when *shade* is True. **kwargs Other arguments are forwarded to `.Poly3DCollection`. """ had_data = self.has_data() if Z.ndim != 2: raise ValueError("Argument Z must be 2-dimensional.") Z = cbook._to_unmasked_float_array(Z) X, Y, Z = np.broadcast_arrays(X, Y, Z) rows, cols = Z.shape has_stride = 'rstride' in kwargs or 'cstride' in kwargs has_count = 'rcount' in kwargs or 'ccount' in kwargs if has_stride and has_count: raise ValueError("Cannot specify both stride and count arguments") rstride = kwargs.pop('rstride', 10) cstride = kwargs.pop('cstride', 10) rcount = kwargs.pop('rcount', 50) ccount = kwargs.pop('ccount', 50) if rcParams['_internal.classic_mode']: # Strides have priority over counts in classic mode. # So, only compute strides from counts # if counts were explicitly given compute_strides = has_count else: # If the strides are provided then it has priority. # Otherwise, compute the strides from the counts. compute_strides = not has_stride if compute_strides: rstride = int(max(np.ceil(rows / rcount), 1)) cstride = int(max(np.ceil(cols / ccount), 1)) if 'facecolors' in kwargs: fcolors = kwargs.pop('facecolors') else: color = kwargs.pop('color', None) if color is None: color = self._get_lines.get_next_color() color = np.array(mcolors.to_rgba(color)) fcolors = None cmap = kwargs.get('cmap', None) shade = kwargs.pop('shade', cmap is None) if shade is None: _api.warn_deprecated( "3.1", message="Passing shade=None to Axes3D.plot_surface() is " "deprecated since matplotlib 3.1 and will change its " "semantic or raise an error in matplotlib 3.3. " "Please use shade=False instead.") colset = [] # the sampled facecolor if (rows - 1) % rstride == 0 and \ (cols - 1) % cstride == 0 and \ fcolors is None: polys = np.stack( [cbook._array_patch_perimeters(a, rstride, cstride) for a in (X, Y, Z)], axis=-1) else: # evenly spaced, and including both endpoints row_inds = list(range(0, rows-1, rstride)) + [rows-1] col_inds = list(range(0, cols-1, cstride)) + [cols-1] polys = [] for rs, rs_next in zip(row_inds[:-1], row_inds[1:]): for cs, cs_next in zip(col_inds[:-1], col_inds[1:]): ps = [ # +1 ensures we share edges between polygons cbook._array_perimeter(a[rs:rs_next+1, cs:cs_next+1]) for a in (X, Y, Z) ] # ps = np.stack(ps, axis=-1) ps = np.array(ps).T polys.append(ps) if fcolors is not None: colset.append(fcolors[rs][cs]) # In cases where there are NaNs in the data (possibly from masked # arrays), artifacts can be introduced. Here check whether NaNs exist # and remove the entries if so if not isinstance(polys, np.ndarray) or np.isnan(polys).any(): new_polys = [] new_colset = [] # Depending on fcolors, colset is either an empty list or has as # many elements as polys. In the former case new_colset results in # a list with None entries, that is discarded later. for p, col in itertools.zip_longest(polys, colset): new_poly = np.array(p)[~np.isnan(p).any(axis=1)] if len(new_poly): new_polys.append(new_poly) new_colset.append(col) # Replace previous polys and, if fcolors is not None, colset polys = new_polys if fcolors is not None: colset = new_colset # note that the striding causes some polygons to have more coordinates # than others polyc = art3d.Poly3DCollection(polys, *args, **kwargs) if fcolors is not None: if shade: colset = self._shade_colors( colset, self._generate_normals(polys), lightsource) polyc.set_facecolors(colset) polyc.set_edgecolors(colset) elif cmap: # can't always vectorize, because polys might be jagged if isinstance(polys, np.ndarray): avg_z = polys[..., 2].mean(axis=-1) else: avg_z = np.array([ps[:, 2].mean() for ps in polys]) polyc.set_array(avg_z) if vmin is not None or vmax is not None: polyc.set_clim(vmin, vmax) if norm is not None: polyc.set_norm(norm) else: if shade: colset = self._shade_colors( color, self._generate_normals(polys), lightsource) else: colset = color polyc.set_facecolors(colset) self.add_collection(polyc) self.auto_scale_xyz(X, Y, Z, had_data) return polyc def _generate_normals(self, polygons): """ Compute the normals of a list of polygons. Normals point towards the viewer for a face with its vertices in counterclockwise order, following the right hand rule. Uses three points equally spaced around the polygon. This normal of course might not make sense for polygons with more than three points not lying in a plane, but it's a plausible and fast approximation. Parameters ---------- polygons : list of (M_i, 3) array-like, or (..., M, 3) array-like A sequence of polygons to compute normals for, which can have varying numbers of vertices. If the polygons all have the same number of vertices and array is passed, then the operation will be vectorized. Returns ------- normals : (..., 3) array A normal vector estimated for the polygon. """ if isinstance(polygons, np.ndarray): # optimization: polygons all have the same number of points, so can # vectorize n = polygons.shape[-2] i1, i2, i3 = 0, n//3, 2*n//3 v1 = polygons[..., i1, :] - polygons[..., i2, :] v2 = polygons[..., i2, :] - polygons[..., i3, :] else: # The subtraction doesn't vectorize because polygons is jagged. v1 = np.empty((len(polygons), 3)) v2 = np.empty((len(polygons), 3)) for poly_i, ps in enumerate(polygons): n = len(ps) i1, i2, i3 = 0, n//3, 2*n//3 v1[poly_i, :] = ps[i1, :] - ps[i2, :] v2[poly_i, :] = ps[i2, :] - ps[i3, :] return np.cross(v1, v2) def _shade_colors(self, color, normals, lightsource=None): """ Shade *color* using normal vectors given by *normals*. *color* can also be an array of the same length as *normals*. """ if lightsource is None: # chosen for backwards-compatibility lightsource = mcolors.LightSource(azdeg=225, altdeg=19.4712) with np.errstate(invalid="ignore"): shade = ((normals / np.linalg.norm(normals, axis=1, keepdims=True)) @ lightsource.direction) mask = ~np.isnan(shade) if mask.any(): # convert dot product to allowed shading fractions in_norm = mcolors.Normalize(-1, 1) out_norm = mcolors.Normalize(0.3, 1).inverse def norm(x): return out_norm(in_norm(x)) shade[~mask] = 0 color = mcolors.to_rgba_array(color) # shape of color should be (M, 4) (where M is number of faces) # shape of shade should be (M,) # colors should have final shape of (M, 4) alpha = color[:, 3] colors = norm(shade)[:, np.newaxis] * color colors[:, 3] = alpha else: colors = np.asanyarray(color).copy() return colors @_api.delete_parameter("3.4", "args", alternative="kwargs") def plot_wireframe(self, X, Y, Z, *args, **kwargs): """ Plot a 3D wireframe. .. note:: The *rcount* and *ccount* kwargs, which both default to 50, determine the maximum number of samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these numbers of points. Parameters ---------- X, Y, Z : 2D arrays Data values. rcount, ccount : int Maximum number of samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these numbers of points. Setting a count to zero causes the data to be not sampled in the corresponding direction, producing a 3D line plot rather than a wireframe plot. Defaults to 50. rstride, cstride : int Downsampling stride in each direction. These arguments are mutually exclusive with *rcount* and *ccount*. If only one of *rstride* or *cstride* is set, the other defaults to 1. Setting a stride to zero causes the data to be not sampled in the corresponding direction, producing a 3D line plot rather than a wireframe plot. 'classic' mode uses a default of ``rstride = cstride = 1`` instead of the new default of ``rcount = ccount = 50``. **kwargs Other arguments are forwarded to `.Line3DCollection`. """ had_data = self.has_data() if Z.ndim != 2: raise ValueError("Argument Z must be 2-dimensional.") # FIXME: Support masked arrays X, Y, Z = np.broadcast_arrays(X, Y, Z) rows, cols = Z.shape has_stride = 'rstride' in kwargs or 'cstride' in kwargs has_count = 'rcount' in kwargs or 'ccount' in kwargs if has_stride and has_count: raise ValueError("Cannot specify both stride and count arguments") rstride = kwargs.pop('rstride', 1) cstride = kwargs.pop('cstride', 1) rcount = kwargs.pop('rcount', 50) ccount = kwargs.pop('ccount', 50) if rcParams['_internal.classic_mode']: # Strides have priority over counts in classic mode. # So, only compute strides from counts # if counts were explicitly given if has_count: rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0 cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0 else: # If the strides are provided then it has priority. # Otherwise, compute the strides from the counts. if not has_stride: rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0 cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0 # We want two sets of lines, one running along the "rows" of # Z and another set of lines running along the "columns" of Z. # This transpose will make it easy to obtain the columns. tX, tY, tZ = np.transpose(X), np.transpose(Y), np.transpose(Z) if rstride: rii = list(range(0, rows, rstride)) # Add the last index only if needed if rows > 0 and rii[-1] != (rows - 1): rii += [rows-1] else: rii = [] if cstride: cii = list(range(0, cols, cstride)) # Add the last index only if needed if cols > 0 and cii[-1] != (cols - 1): cii += [cols-1] else: cii = [] if rstride == 0 and cstride == 0: raise ValueError("Either rstride or cstride must be non zero") # If the inputs were empty, then just # reset everything. if Z.size == 0: rii = [] cii = [] xlines = [X[i] for i in rii] ylines = [Y[i] for i in rii] zlines = [Z[i] for i in rii] txlines = [tX[i] for i in cii] tylines = [tY[i] for i in cii] tzlines = [tZ[i] for i in cii] lines = ([list(zip(xl, yl, zl)) for xl, yl, zl in zip(xlines, ylines, zlines)] + [list(zip(xl, yl, zl)) for xl, yl, zl in zip(txlines, tylines, tzlines)]) linec = art3d.Line3DCollection(lines, *args, **kwargs) self.add_collection(linec) self.auto_scale_xyz(X, Y, Z, had_data) return linec def plot_trisurf(self, *args, color=None, norm=None, vmin=None, vmax=None, lightsource=None, **kwargs): """ Plot a triangulated surface. The (optional) triangulation can be specified in one of two ways; either:: plot_trisurf(triangulation, ...) where triangulation is a `~matplotlib.tri.Triangulation` object, or:: plot_trisurf(X, Y, ...) plot_trisurf(X, Y, triangles, ...) plot_trisurf(X, Y, triangles=triangles, ...) in which case a Triangulation object will be created. See `.Triangulation` for a explanation of these possibilities. The remaining arguments are:: plot_trisurf(..., Z) where *Z* is the array of values to contour, one per point in the triangulation. Parameters ---------- X, Y, Z : array-like Data values as 1D arrays. color Color of the surface patches. cmap A colormap for the surface patches. norm : Normalize An instance of Normalize to map values to colors. vmin, vmax : float, default: None Minimum and maximum value to map. shade : bool, default: True Whether to shade the facecolors. Shading is always disabled when *cmap* is specified. lightsource : `~matplotlib.colors.LightSource` The lightsource to use when *shade* is True. **kwargs All other arguments are passed on to :class:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection` Examples -------- .. plot:: gallery/mplot3d/trisurf3d.py .. plot:: gallery/mplot3d/trisurf3d_2.py """ had_data = self.has_data() # TODO: Support custom face colours if color is None: color = self._get_lines.get_next_color() color = np.array(mcolors.to_rgba(color)) cmap = kwargs.get('cmap', None) shade = kwargs.pop('shade', cmap is None) tri, args, kwargs = \ Triangulation.get_from_args_and_kwargs(*args, **kwargs) try: z = kwargs.pop('Z') except KeyError: # We do this so Z doesn't get passed as an arg to PolyCollection z, *args = args z = np.asarray(z) triangles = tri.get_masked_triangles() xt = tri.x[triangles] yt = tri.y[triangles] zt = z[triangles] verts = np.stack((xt, yt, zt), axis=-1) polyc = art3d.Poly3DCollection(verts, *args, **kwargs) if cmap: # average over the three points of each triangle avg_z = verts[:, :, 2].mean(axis=1) polyc.set_array(avg_z) if vmin is not None or vmax is not None: polyc.set_clim(vmin, vmax) if norm is not None: polyc.set_norm(norm) else: if shade: normals = self._generate_normals(verts) colset = self._shade_colors(color, normals, lightsource) else: colset = color polyc.set_facecolors(colset) self.add_collection(polyc) self.auto_scale_xyz(tri.x, tri.y, z, had_data) return polyc def _3d_extend_contour(self, cset, stride=5): """ Extend a contour in 3D by creating """ levels = cset.levels colls = cset.collections dz = (levels[1] - levels[0]) / 2 for z, linec in zip(levels, colls): paths = linec.get_paths() if not paths: continue topverts = art3d._paths_to_3d_segments(paths, z - dz) botverts = art3d._paths_to_3d_segments(paths, z + dz) color = linec.get_edgecolor()[0] polyverts = [] normals = [] nsteps = round(len(topverts[0]) / stride) if nsteps <= 1: if len(topverts[0]) > 1: nsteps = 2 else: continue stepsize = (len(topverts[0]) - 1) / (nsteps - 1) for i in range(int(round(nsteps)) - 1): i1 = int(round(i * stepsize)) i2 = int(round((i + 1) * stepsize)) polyverts.append([topverts[0][i1], topverts[0][i2], botverts[0][i2], botverts[0][i1]]) # all polygons have 4 vertices, so vectorize polyverts = np.array(polyverts) normals = self._generate_normals(polyverts) colors = self._shade_colors(color, normals) colors2 = self._shade_colors(color, normals) polycol = art3d.Poly3DCollection(polyverts, facecolors=colors, edgecolors=colors2) polycol.set_sort_zpos(z) self.add_collection3d(polycol) for col in colls: col.remove() def add_contour_set( self, cset, extend3d=False, stride=5, zdir='z', offset=None): zdir = '-' + zdir if extend3d: self._3d_extend_contour(cset, stride) else: for z, linec in zip(cset.levels, cset.collections): if offset is not None: z = offset art3d.line_collection_2d_to_3d(linec, z, zdir=zdir) def add_contourf_set(self, cset, zdir='z', offset=None): self._add_contourf_set(cset, zdir=zdir, offset=offset) def _add_contourf_set(self, cset, zdir='z', offset=None): """ Returns ------- levels : numpy.ndarray Levels at which the filled contours are added. """ zdir = '-' + zdir midpoints = cset.levels[:-1] + np.diff(cset.levels) / 2 # Linearly interpolate to get levels for any extensions if cset._extend_min: min_level = cset.levels[0] - np.diff(cset.levels[:2]) / 2 midpoints = np.insert(midpoints, 0, min_level) if cset._extend_max: max_level = cset.levels[-1] + np.diff(cset.levels[-2:]) / 2 midpoints = np.append(midpoints, max_level) for z, linec in zip(midpoints, cset.collections): if offset is not None: z = offset art3d.poly_collection_2d_to_3d(linec, z, zdir=zdir) linec.set_sort_zpos(z) return midpoints @_preprocess_data() def contour(self, X, Y, Z, *args, extend3d=False, stride=5, zdir='z', offset=None, **kwargs): """ Create a 3D contour plot. Parameters ---------- X, Y, Z : array-like, Input data. See `~matplotlib.axes.Axes.contour` for acceptable data shapes. extend3d : bool, default: False Whether to extend contour in 3D. stride : int Step size for extending contour. zdir : {'x', 'y', 'z'}, default: 'z' The direction to use. offset : float, optional If specified, plot a projection of the contour lines at this position in a plane normal to zdir. data : indexable object, optional DATA_PARAMETER_PLACEHOLDER *args, **kwargs Other arguments are forwarded to `matplotlib.axes.Axes.contour`. Returns ------- matplotlib.contour.QuadContourSet """ had_data = self.has_data() jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir) cset = super().contour(jX, jY, jZ, *args, **kwargs) self.add_contour_set(cset, extend3d, stride, zdir, offset) self.auto_scale_xyz(X, Y, Z, had_data) return cset contour3D = contour @_preprocess_data() def tricontour(self, *args, extend3d=False, stride=5, zdir='z', offset=None, **kwargs): """ Create a 3D contour plot. .. note:: This method currently produces incorrect output due to a longstanding bug in 3D PolyCollection rendering. Parameters ---------- X, Y, Z : array-like Input data. See `~matplotlib.axes.Axes.tricontour` for acceptable data shapes. extend3d : bool, default: False Whether to extend contour in 3D. stride : int Step size for extending contour. zdir : {'x', 'y', 'z'}, default: 'z' The direction to use. offset : float, optional If specified, plot a projection of the contour lines at this position in a plane normal to zdir. data : indexable object, optional DATA_PARAMETER_PLACEHOLDER *args, **kwargs Other arguments are forwarded to `matplotlib.axes.Axes.tricontour`. Returns ------- matplotlib.tri.tricontour.TriContourSet """ had_data = self.has_data() tri, args, kwargs = Triangulation.get_from_args_and_kwargs( *args, **kwargs) X = tri.x Y = tri.y if 'Z' in kwargs: Z = kwargs.pop('Z') else: # We do this so Z doesn't get passed as an arg to Axes.tricontour Z, *args = args jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir) tri = Triangulation(jX, jY, tri.triangles, tri.mask) cset = super().tricontour(tri, jZ, *args, **kwargs) self.add_contour_set(cset, extend3d, stride, zdir, offset) self.auto_scale_xyz(X, Y, Z, had_data) return cset def _auto_scale_contourf(self, X, Y, Z, zdir, levels, had_data): # Autoscale in the zdir based on the levels added, which are # different from data range if any contour extensions are present dim_vals = {'x': X, 'y': Y, 'z': Z, zdir: levels} # Input data and levels have different sizes, but auto_scale_xyz # expected same-size input, so manually take min/max limits limits = [(np.nanmin(dim_vals[dim]), np.nanmax(dim_vals[dim])) for dim in ['x', 'y', 'z']] self.auto_scale_xyz(*limits, had_data) @_preprocess_data() def contourf(self, X, Y, Z, *args, zdir='z', offset=None, **kwargs): """ Create a 3D filled contour plot. Parameters ---------- X, Y, Z : array-like Input data. See `~matplotlib.axes.Axes.contourf` for acceptable data shapes. zdir : {'x', 'y', 'z'}, default: 'z' The direction to use. offset : float, optional If specified, plot a projection of the contour lines at this position in a plane normal to zdir. data : indexable object, optional DATA_PARAMETER_PLACEHOLDER *args, **kwargs Other arguments are forwarded to `matplotlib.axes.Axes.contourf`. Returns ------- matplotlib.contour.QuadContourSet """ had_data = self.has_data() jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir) cset = super().contourf(jX, jY, jZ, *args, **kwargs) levels = self._add_contourf_set(cset, zdir, offset) self._auto_scale_contourf(X, Y, Z, zdir, levels, had_data) return cset contourf3D = contourf @_preprocess_data() def tricontourf(self, *args, zdir='z', offset=None, **kwargs): """ Create a 3D filled contour plot. .. note:: This method currently produces incorrect output due to a longstanding bug in 3D PolyCollection rendering. Parameters ---------- X, Y, Z : array-like Input data. See `~matplotlib.axes.Axes.tricontourf` for acceptable data shapes. zdir : {'x', 'y', 'z'}, default: 'z' The direction to use. offset : float, optional If specified, plot a projection of the contour lines at this position in a plane normal to zdir. data : indexable object, optional DATA_PARAMETER_PLACEHOLDER *args, **kwargs Other arguments are forwarded to `matplotlib.axes.Axes.tricontourf`. Returns ------- matplotlib.tri.tricontour.TriContourSet """ had_data = self.has_data() tri, args, kwargs = Triangulation.get_from_args_and_kwargs( *args, **kwargs) X = tri.x Y = tri.y if 'Z' in kwargs: Z = kwargs.pop('Z') else: # We do this so Z doesn't get passed as an arg to Axes.tricontourf Z, *args = args jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir) tri = Triangulation(jX, jY, tri.triangles, tri.mask) cset = super().tricontourf(tri, jZ, *args, **kwargs) levels = self._add_contourf_set(cset, zdir, offset) self._auto_scale_contourf(X, Y, Z, zdir, levels, had_data) return cset def add_collection3d(self, col, zs=0, zdir='z'): """ Add a 3D collection object to the plot. 2D collection types are converted to a 3D version by modifying the object and adding z coordinate information. Supported are: - PolyCollection - LineCollection - PatchCollection """ zvals = np.atleast_1d(zs) zsortval = (np.min(zvals) if zvals.size else 0) # FIXME: arbitrary default # FIXME: use issubclass() (although, then a 3D collection # object would also pass.) Maybe have a collection3d # abstract class to test for and exclude? if type(col) is mcoll.PolyCollection: art3d.poly_collection_2d_to_3d(col, zs=zs, zdir=zdir) col.set_sort_zpos(zsortval) elif type(col) is mcoll.LineCollection: art3d.line_collection_2d_to_3d(col, zs=zs, zdir=zdir) col.set_sort_zpos(zsortval) elif type(col) is mcoll.PatchCollection: art3d.patch_collection_2d_to_3d(col, zs=zs, zdir=zdir) col.set_sort_zpos(zsortval) collection = super().add_collection(col) return collection @_preprocess_data(replace_names=["xs", "ys", "zs", "s", "edgecolors", "c", "facecolor", "facecolors", "color"]) def scatter(self, xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True, *args, **kwargs): """ Create a scatter plot. Parameters ---------- xs, ys : array-like The data positions. zs : float or array-like, default: 0 The z-positions. Either an array of the same length as *xs* and *ys* or a single value to place all points in the same plane. zdir : {'x', 'y', 'z', '-x', '-y', '-z'}, default: 'z' The axis direction for the *zs*. This is useful when plotting 2D data on a 3D Axes. The data must be passed as *xs*, *ys*. Setting *zdir* to 'y' then plots the data to the x-z-plane. See also :doc:`/gallery/mplot3d/2dcollections3d`. s : float or array-like, default: 20 The marker size in points**2. Either an array of the same length as *xs* and *ys* or a single value to make all markers the same size. c : color, sequence, or sequence of colors, optional The marker color. Possible values: - A single color format string. - A sequence of colors of length n. - A sequence of n numbers to be mapped to colors using *cmap* and *norm*. - A 2D array in which the rows are RGB or RGBA. For more details see the *c* argument of `~.axes.Axes.scatter`. depthshade : bool, default: True Whether to shade the scatter markers to give the appearance of depth. Each call to ``scatter()`` will perform its depthshading independently. data : indexable object, optional DATA_PARAMETER_PLACEHOLDER **kwargs All other arguments are passed on to `~.axes.Axes.scatter`. Returns ------- paths : `~matplotlib.collections.PathCollection` """ had_data = self.has_data() zs_orig = zs xs, ys, zs = np.broadcast_arrays( *[np.ravel(np.ma.filled(t, np.nan)) for t in [xs, ys, zs]]) s = np.ma.ravel(s) # This doesn't have to match x, y in size. xs, ys, zs, s, c = cbook.delete_masked_points(xs, ys, zs, s, c) # For xs and ys, 2D scatter() will do the copying. if np.may_share_memory(zs_orig, zs): # Avoid unnecessary copies. zs = zs.copy() patches = super().scatter(xs, ys, s=s, c=c, *args, **kwargs) art3d.patch_collection_2d_to_3d(patches, zs=zs, zdir=zdir, depthshade=depthshade) if self._zmargin < 0.05 and xs.size > 0: self.set_zmargin(0.05) self.auto_scale_xyz(xs, ys, zs, had_data) return patches scatter3D = scatter @_preprocess_data() def bar(self, left, height, zs=0, zdir='z', *args, **kwargs): """ Add 2D bar(s). Parameters ---------- left : 1D array-like The x coordinates of the left sides of the bars. height : 1D array-like The height of the bars. zs : float or 1D array-like Z coordinate of bars; if a single value is specified, it will be used for all bars. zdir : {'x', 'y', 'z'}, default: 'z' When plotting 2D data, the direction to use as z ('x', 'y' or 'z'). data : indexable object, optional DATA_PARAMETER_PLACEHOLDER **kwargs Other arguments are forwarded to `matplotlib.axes.Axes.bar`. Returns ------- mpl_toolkits.mplot3d.art3d.Patch3DCollection """ had_data = self.has_data() patches = super().bar(left, height, *args, **kwargs) zs = np.broadcast_to(zs, len(left)) verts = [] verts_zs = [] for p, z in zip(patches, zs): vs = art3d._get_patch_verts(p) verts += vs.tolist() verts_zs += [z] * len(vs) art3d.patch_2d_to_3d(p, z, zdir) if 'alpha' in kwargs: p.set_alpha(kwargs['alpha']) if len(verts) > 0: # the following has to be skipped if verts is empty # NOTE: Bugs could still occur if len(verts) > 0, # but the "2nd dimension" is empty. xs, ys = zip(*verts) else: xs, ys = [], [] xs, ys, verts_zs = art3d.juggle_axes(xs, ys, verts_zs, zdir) self.auto_scale_xyz(xs, ys, verts_zs, had_data) return patches @_preprocess_data() def bar3d(self, x, y, z, dx, dy, dz, color=None, zsort='average', shade=True, lightsource=None, *args, **kwargs): """ Generate a 3D barplot. This method creates three dimensional barplot where the width, depth, height, and color of the bars can all be uniquely set. Parameters ---------- x, y, z : array-like The coordinates of the anchor point of the bars. dx, dy, dz : float or array-like The width, depth, and height of the bars, respectively. color : sequence of colors, optional The color of the bars can be specified globally or individually. This parameter can be: - A single color, to color all bars the same color. - An array of colors of length N bars, to color each bar independently. - An array of colors of length 6, to color the faces of the bars similarly. - An array of colors of length 6 * N bars, to color each face independently. When coloring the faces of the boxes specifically, this is the order of the coloring: 1. -Z (bottom of box) 2. +Z (top of box) 3. -Y 4. +Y 5. -X 6. +X zsort : str, optional The z-axis sorting scheme passed onto `~.art3d.Poly3DCollection` shade : bool, default: True When true, this shades the dark sides of the bars (relative to the plot's source of light). lightsource : `~matplotlib.colors.LightSource` The lightsource to use when *shade* is True. data : indexable object, optional DATA_PARAMETER_PLACEHOLDER **kwargs Any additional keyword arguments are passed onto `~.art3d.Poly3DCollection`. Returns ------- collection : `~.art3d.Poly3DCollection` A collection of three dimensional polygons representing the bars. """ had_data = self.has_data() x, y, z, dx, dy, dz = np.broadcast_arrays( np.atleast_1d(x), y, z, dx, dy, dz) minx = np.min(x) maxx = np.max(x + dx) miny = np.min(y) maxy = np.max(y + dy) minz = np.min(z) maxz = np.max(z + dz) # shape (6, 4, 3) # All faces are oriented facing outwards - when viewed from the # outside, their vertices are in a counterclockwise ordering. cuboid = np.array([ # -z ( (0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0), ), # +z ( (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), ), # -y ( (0, 0, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1), ), # +y ( (0, 1, 0), (0, 1, 1), (1, 1, 1), (1, 1, 0), ), # -x ( (0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0), ), # +x ( (1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 0, 1), ), ]) # indexed by [bar, face, vertex, coord] polys = np.empty(x.shape + cuboid.shape) # handle each coordinate separately for i, p, dp in [(0, x, dx), (1, y, dy), (2, z, dz)]: p = p[..., np.newaxis, np.newaxis] dp = dp[..., np.newaxis, np.newaxis] polys[..., i] = p + dp * cuboid[..., i] # collapse the first two axes polys = polys.reshape((-1,) + polys.shape[2:]) facecolors = [] if color is None: color = [self._get_patches_for_fill.get_next_color()] color = list(mcolors.to_rgba_array(color)) if len(color) == len(x): # bar colors specified, need to expand to number of faces for c in color: facecolors.extend([c] * 6) else: # a single color specified, or face colors specified explicitly facecolors = color if len(facecolors) < len(x): facecolors *= (6 * len(x)) if shade: normals = self._generate_normals(polys) sfacecolors = self._shade_colors(facecolors, normals, lightsource) else: sfacecolors = facecolors col = art3d.Poly3DCollection(polys, zsort=zsort, facecolor=sfacecolors, *args, **kwargs) self.add_collection(col) self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data) return col def set_title(self, label, fontdict=None, loc='center', **kwargs): # docstring inherited ret = super().set_title(label, fontdict=fontdict, loc=loc, **kwargs) (x, y) = self.title.get_position() self.title.set_y(0.92 * y) return ret @_preprocess_data() def quiver(self, *args, length=1, arrow_length_ratio=.3, pivot='tail', normalize=False, **kwargs): """ ax.quiver(X, Y, Z, U, V, W, /, length=1, arrow_length_ratio=.3, \ pivot='tail', normalize=False, **kwargs) Plot a 3D field of arrows. The arguments could be array-like or scalars, so long as they they can be broadcast together. The arguments can also be masked arrays. If an element in any of argument is masked, then that corresponding quiver element will not be plotted. Parameters ---------- X, Y, Z : array-like The x, y and z coordinates of the arrow locations (default is tail of arrow; see *pivot* kwarg). U, V, W : array-like The x, y and z components of the arrow vectors. length : float, default: 1 The length of each quiver. arrow_length_ratio : float, default: 0.3 The ratio of the arrow head with respect to the quiver. pivot : {'tail', 'middle', 'tip'}, default: 'tail' The part of the arrow that is at the grid point; the arrow rotates about this point, hence the name *pivot*. normalize : bool, default: False Whether all arrows are normalized to have the same length, or keep the lengths defined by *u*, *v*, and *w*. data : indexable object, optional DATA_PARAMETER_PLACEHOLDER **kwargs Any additional keyword arguments are delegated to :class:`~matplotlib.collections.LineCollection` """ def calc_arrows(UVW, angle=15): # get unit direction vector perpendicular to (u, v, w) x = UVW[:, 0] y = UVW[:, 1] norm = np.linalg.norm(UVW[:, :2], axis=1) x_p = np.divide(y, norm, where=norm != 0, out=np.zeros_like(x)) y_p = np.divide(-x, norm, where=norm != 0, out=np.ones_like(x)) # compute the two arrowhead direction unit vectors ra = math.radians(angle) c = math.cos(ra) s = math.sin(ra) # construct the rotation matrices of shape (3, 3, n) Rpos = np.array( [[c + (x_p ** 2) * (1 - c), x_p * y_p * (1 - c), y_p * s], [y_p * x_p * (1 - c), c + (y_p ** 2) * (1 - c), -x_p * s], [-y_p * s, x_p * s, np.full_like(x_p, c)]]) # opposite rotation negates all the sin terms Rneg = Rpos.copy() Rneg[[0, 1, 2, 2], [2, 2, 0, 1]] *= -1 # Batch n (3, 3) x (3) matrix multiplications ((3, 3, n) x (n, 3)). Rpos_vecs = np.einsum("ij...,...j->...i", Rpos, UVW) Rneg_vecs = np.einsum("ij...,...j->...i", Rneg, UVW) # Stack into (n, 2, 3) result. head_dirs = np.stack([Rpos_vecs, Rneg_vecs], axis=1) return head_dirs had_data = self.has_data() # handle args argi = 6 if len(args) < argi: raise ValueError('Wrong number of arguments. Expected %d got %d' % (argi, len(args))) # first 6 arguments are X, Y, Z, U, V, W input_args = args[:argi] # extract the masks, if any masks = [k.mask for k in input_args if isinstance(k, np.ma.MaskedArray)] # broadcast to match the shape bcast = np.broadcast_arrays(*input_args, *masks) input_args = bcast[:argi] masks = bcast[argi:] if masks: # combine the masks into one mask = functools.reduce(np.logical_or, masks) # put mask on and compress input_args = [np.ma.array(k, mask=mask).compressed() for k in input_args] else: input_args = [np.ravel(k) for k in input_args] if any(len(v) == 0 for v in input_args): # No quivers, so just make an empty collection and return early linec = art3d.Line3DCollection([], *args[argi:], **kwargs) self.add_collection(linec) return linec shaft_dt = np.array([0., length], dtype=float) arrow_dt = shaft_dt * arrow_length_ratio _api.check_in_list(['tail', 'middle', 'tip'], pivot=pivot) if pivot == 'tail': shaft_dt -= length elif pivot == 'middle': shaft_dt -= length / 2 XYZ = np.column_stack(input_args[:3]) UVW = np.column_stack(input_args[3:argi]).astype(float) # Normalize rows of UVW norm = np.linalg.norm(UVW, axis=1) # If any row of UVW is all zeros, don't make a quiver for it mask = norm > 0 XYZ = XYZ[mask] if normalize: UVW = UVW[mask] / norm[mask].reshape((-1, 1)) else: UVW = UVW[mask] if len(XYZ) > 0: # compute the shaft lines all at once with an outer product shafts = (XYZ - np.multiply.outer(shaft_dt, UVW)).swapaxes(0, 1) # compute head direction vectors, n heads x 2 sides x 3 dimensions head_dirs = calc_arrows(UVW) # compute all head lines at once, starting from the shaft ends heads = shafts[:, :1] - np.multiply.outer(arrow_dt, head_dirs) # stack left and right head lines together heads = heads.reshape((len(arrow_dt), -1, 3)) # transpose to get a list of lines heads = heads.swapaxes(0, 1) lines = [*shafts, *heads] else: lines = [] linec = art3d.Line3DCollection(lines, *args[argi:], **kwargs) self.add_collection(linec) self.auto_scale_xyz(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], had_data) return linec quiver3D = quiver def voxels(self, *args, facecolors=None, edgecolors=None, shade=True, lightsource=None, **kwargs): """ ax.voxels([x, y, z,] /, filled, facecolors=None, edgecolors=None, \ **kwargs) Plot a set of filled voxels All voxels are plotted as 1x1x1 cubes on the axis, with ``filled[0, 0, 0]`` placed with its lower corner at the origin. Occluded faces are not plotted. Parameters ---------- filled : 3D np.array of bool A 3D array of values, with truthy values indicating which voxels to fill x, y, z : 3D np.array, optional The coordinates of the corners of the voxels. This should broadcast to a shape one larger in every dimension than the shape of *filled*. These can be used to plot non-cubic voxels. If not specified, defaults to increasing integers along each axis, like those returned by :func:`~numpy.indices`. As indicated by the ``/`` in the function signature, these arguments can only be passed positionally. facecolors, edgecolors : array-like, optional The color to draw the faces and edges of the voxels. Can only be passed as keyword arguments. These parameters can be: - A single color value, to color all voxels the same color. This can be either a string, or a 1D rgb/rgba array - ``None``, the default, to use a single color for the faces, and the style default for the edges. - A 3D ndarray of color names, with each item the color for the corresponding voxel. The size must match the voxels. - A 4D ndarray of rgb/rgba data, with the components along the last axis. shade : bool, default: True Whether to shade the facecolors. Shading is always disabled when *cmap* is specified. lightsource : `~matplotlib.colors.LightSource` The lightsource to use when *shade* is True. **kwargs Additional keyword arguments to pass onto `~mpl_toolkits.mplot3d.art3d.Poly3DCollection`. Returns ------- faces : dict A dictionary indexed by coordinate, where ``faces[i, j, k]`` is a `.Poly3DCollection` of the faces drawn for the voxel ``filled[i, j, k]``. If no faces were drawn for a given voxel, either because it was not asked to be drawn, or it is fully occluded, then ``(i, j, k) not in faces``. Examples -------- .. plot:: gallery/mplot3d/voxels.py .. plot:: gallery/mplot3d/voxels_rgb.py .. plot:: gallery/mplot3d/voxels_torus.py .. plot:: gallery/mplot3d/voxels_numpy_logo.py """ # work out which signature we should be using, and use it to parse # the arguments. Name must be voxels for the correct error message if len(args) >= 3: # underscores indicate position only def voxels(__x, __y, __z, filled, **kwargs): return (__x, __y, __z), filled, kwargs else: def voxels(filled, **kwargs): return None, filled, kwargs xyz, filled, kwargs = voxels(*args, **kwargs) # check dimensions if filled.ndim != 3: raise ValueError("Argument filled must be 3-dimensional") size = np.array(filled.shape, dtype=np.intp) # check xyz coordinates, which are one larger than the filled shape coord_shape = tuple(size + 1) if xyz is None: x, y, z = np.indices(coord_shape) else: x, y, z = (np.broadcast_to(c, coord_shape) for c in xyz) def _broadcast_color_arg(color, name): if np.ndim(color) in (0, 1): # single color, like "red" or [1, 0, 0] return np.broadcast_to(color, filled.shape + np.shape(color)) elif np.ndim(color) in (3, 4): # 3D array of strings, or 4D array with last axis rgb if np.shape(color)[:3] != filled.shape: raise ValueError( "When multidimensional, {} must match the shape of " "filled".format(name)) return color else: raise ValueError("Invalid {} argument".format(name)) # broadcast and default on facecolors if facecolors is None: facecolors = self._get_patches_for_fill.get_next_color() facecolors = _broadcast_color_arg(facecolors, 'facecolors') # broadcast but no default on edgecolors edgecolors = _broadcast_color_arg(edgecolors, 'edgecolors') # scale to the full array, even if the data is only in the center self.auto_scale_xyz(x, y, z) # points lying on corners of a square square = np.array([ [0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], ], dtype=np.intp) voxel_faces = defaultdict(list) def permutation_matrices(n): """Generate cyclic permutation matrices.""" mat = np.eye(n, dtype=np.intp) for i in range(n): yield mat mat = np.roll(mat, 1, axis=0) # iterate over each of the YZ, ZX, and XY orientations, finding faces # to render for permute in permutation_matrices(3): # find the set of ranges to iterate over pc, qc, rc = permute.T.dot(size) pinds = np.arange(pc) qinds = np.arange(qc) rinds = np.arange(rc) square_rot_pos = square.dot(permute.T) square_rot_neg = square_rot_pos[::-1] # iterate within the current plane for p in pinds: for q in qinds: # iterate perpendicularly to the current plane, handling # boundaries. We only draw faces between a voxel and an # empty space, to avoid drawing internal faces. # draw lower faces p0 = permute.dot([p, q, 0]) i0 = tuple(p0) if filled[i0]: voxel_faces[i0].append(p0 + square_rot_neg) # draw middle faces for r1, r2 in zip(rinds[:-1], rinds[1:]): p1 = permute.dot([p, q, r1]) p2 = permute.dot([p, q, r2]) i1 = tuple(p1) i2 = tuple(p2) if filled[i1] and not filled[i2]: voxel_faces[i1].append(p2 + square_rot_pos) elif not filled[i1] and filled[i2]: voxel_faces[i2].append(p2 + square_rot_neg) # draw upper faces pk = permute.dot([p, q, rc-1]) pk2 = permute.dot([p, q, rc]) ik = tuple(pk) if filled[ik]: voxel_faces[ik].append(pk2 + square_rot_pos) # iterate over the faces, and generate a Poly3DCollection for each # voxel polygons = {} for coord, faces_inds in voxel_faces.items(): # convert indices into 3D positions if xyz is None: faces = faces_inds else: faces = [] for face_inds in faces_inds: ind = face_inds[:, 0], face_inds[:, 1], face_inds[:, 2] face = np.empty(face_inds.shape) face[:, 0] = x[ind] face[:, 1] = y[ind] face[:, 2] = z[ind] faces.append(face) # shade the faces facecolor = facecolors[coord] edgecolor = edgecolors[coord] if shade: normals = self._generate_normals(faces) facecolor = self._shade_colors(facecolor, normals, lightsource) if edgecolor is not None: edgecolor = self._shade_colors( edgecolor, normals, lightsource ) poly = art3d.Poly3DCollection( faces, facecolors=facecolor, edgecolors=edgecolor, **kwargs) self.add_collection3d(poly) polygons[coord] = poly return polygons @_preprocess_data(replace_names=["x", "y", "z", "xerr", "yerr", "zerr"]) def errorbar(self, x, y, z, zerr=None, yerr=None, xerr=None, fmt='', barsabove=False, errorevery=1, ecolor=None, elinewidth=None, capsize=None, capthick=None, xlolims=False, xuplims=False, ylolims=False, yuplims=False, zlolims=False, zuplims=False, **kwargs): """ Plot lines and/or markers with errorbars around them. *x*/*y*/*z* define the data locations, and *xerr*/*yerr*/*zerr* define the errorbar sizes. By default, this draws the data markers/lines as well the errorbars. Use fmt='none' to draw errorbars only. Parameters ---------- x, y, z : float or array-like The data positions. xerr, yerr, zerr : float or array-like, shape (N,) or (2, N), optional The errorbar sizes: - scalar: Symmetric +/- values for all data points. - shape(N,): Symmetric +/-values for each data point. - shape(2, N): Separate - and + values for each bar. First row contains the lower errors, the second row contains the upper errors. - *None*: No errorbar. Note that all error arrays should have *positive* values. fmt : str, default: '' The format for the data points / data lines. See `.plot` for details. Use 'none' (case insensitive) to plot errorbars without any data markers. ecolor : color, default: None The color of the errorbar lines. If None, use the color of the line connecting the markers. elinewidth : float, default: None The linewidth of the errorbar lines. If None, the linewidth of the current style is used. capsize : float, default: :rc:`errorbar.capsize` The length of the error bar caps in points. capthick : float, default: None An alias to the keyword argument *markeredgewidth* (a.k.a. *mew*). This setting is a more sensible name for the property that controls the thickness of the error bar cap in points. For backwards compatibility, if *mew* or *markeredgewidth* are given, then they will over-ride *capthick*. This may change in future releases. barsabove : bool, default: False If True, will plot the errorbars above the plot symbols. Default is below. xlolims, ylolims, zlolims : bool, default: False These arguments can be used to indicate that a value gives only lower limits. In that case a caret symbol is used to indicate this. *lims*-arguments may be scalars, or array-likes of the same length as the errors. To use limits with inverted axes, `~.Axes.set_xlim` or `~.Axes.set_ylim` must be called before :meth:`errorbar`. Note the tricky parameter names: setting e.g. *ylolims* to True means that the y-value is a *lower* limit of the True value, so, only an *upward*-pointing arrow will be drawn! xuplims, yuplims, zuplims : bool, default: False Same as above, but for controlling the upper limits. errorevery : int or (int, int), default: 1 draws error bars on a subset of the data. *errorevery* =N draws error bars on the points (x[::N], y[::N], z[::N]). *errorevery* =(start, N) draws error bars on the points (x[start::N], y[start::N], z[start::N]). e.g. errorevery=(6, 3) adds error bars to the data at (x[6], x[9], x[12], x[15], ...). Used to avoid overlapping error bars when two series share x-axis values. Returns ------- errlines : list List of `~mpl_toolkits.mplot3d.art3d.Line3DCollection` instances each containing an errorbar line. caplines : list List of `~mpl_toolkits.mplot3d.art3d.Line3D` instances each containing a capline object. limmarks : list List of `~mpl_toolkits.mplot3d.art3d.Line3D` instances each containing a marker with an upper or lower limit. Other Parameters ---------------- data : indexable object, optional DATA_PARAMETER_PLACEHOLDER **kwargs All other keyword arguments for styling errorbar lines are passed `~mpl_toolkits.mplot3d.art3d.Line3DCollection`. Examples -------- .. plot:: gallery/mplot3d/errorbar3d.py """ had_data = self.has_data() kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D) # Drop anything that comes in as None to use the default instead. kwargs = {k: v for k, v in kwargs.items() if v is not None} kwargs.setdefault('zorder', 2) self._process_unit_info([("x", x), ("y", y), ("z", z)], kwargs, convert=False) # make sure all the args are iterable; use lists not arrays to # preserve units x = x if np.iterable(x) else [x] y = y if np.iterable(y) else [y] z = z if np.iterable(z) else [z] if not len(x) == len(y) == len(z): raise ValueError("'x', 'y', and 'z' must have the same size") if isinstance(errorevery, Integral): errorevery = (0, errorevery) if isinstance(errorevery, tuple): if (len(errorevery) == 2 and isinstance(errorevery[0], Integral) and isinstance(errorevery[1], Integral)): errorevery = slice(errorevery[0], None, errorevery[1]) else: raise ValueError( f'errorevery={errorevery!r} is a not a tuple of two ' f'integers') elif isinstance(errorevery, slice): pass elif not isinstance(errorevery, str) and np.iterable(errorevery): # fancy indexing try: x[errorevery] except (ValueError, IndexError) as err: raise ValueError( f"errorevery={errorevery!r} is iterable but not a valid " f"NumPy fancy index to match " f"'xerr'/'yerr'/'zerr'") from err else: raise ValueError( f"errorevery={errorevery!r} is not a recognized value") label = kwargs.pop("label", None) kwargs['label'] = '_nolegend_' # Create the main line and determine overall kwargs for child artists. # We avoid calling self.plot() directly, or self._get_lines(), because # that would call self._process_unit_info again, and do other indirect # data processing. (data_line, base_style), = self._get_lines._plot_args( (x, y) if fmt == '' else (x, y, fmt), kwargs, return_kwargs=True) art3d.line_2d_to_3d(data_line, zs=z) # Do this after creating `data_line` to avoid modifying `base_style`. if barsabove: data_line.set_zorder(kwargs['zorder'] - .1) else: data_line.set_zorder(kwargs['zorder'] + .1) # Add line to plot, or throw it away and use it to determine kwargs. if fmt.lower() != 'none': self.add_line(data_line) else: data_line = None # Remove alpha=0 color that _process_plot_format returns. base_style.pop('color') if 'color' not in base_style: base_style['color'] = 'C0' if ecolor is None: ecolor = base_style['color'] # Eject any line-specific information from format string, as it's not # needed for bars or caps. for key in ['marker', 'markersize', 'markerfacecolor', 'markeredgewidth', 'markeredgecolor', 'markevery', 'linestyle', 'fillstyle', 'drawstyle', 'dash_capstyle', 'dash_joinstyle', 'solid_capstyle', 'solid_joinstyle']: base_style.pop(key, None) # Make the style dict for the line collections (the bars). eb_lines_style = {**base_style, 'color': ecolor} if elinewidth: eb_lines_style['linewidth'] = elinewidth elif 'linewidth' in kwargs: eb_lines_style['linewidth'] = kwargs['linewidth'] for key in ('transform', 'alpha', 'zorder', 'rasterized'): if key in kwargs: eb_lines_style[key] = kwargs[key] # Make the style dict for caps (the "hats"). eb_cap_style = {**base_style, 'linestyle': 'None'} if capsize is None: capsize = rcParams["errorbar.capsize"] if capsize > 0: eb_cap_style['markersize'] = 2. * capsize if capthick is not None: eb_cap_style['markeredgewidth'] = capthick eb_cap_style['color'] = ecolor everymask = np.zeros(len(x), bool) everymask[errorevery] = True def _apply_mask(arrays, mask): # Return, for each array in *arrays*, the elements for which *mask* # is True, without using fancy indexing. return [[*itertools.compress(array, mask)] for array in arrays] def _extract_errs(err, data, lomask, himask): # For separate +/- error values we need to unpack err if len(err.shape) == 2: low_err, high_err = err else: low_err, high_err = err, err lows = np.where(lomask | ~everymask, data, data - low_err) highs = np.where(himask | ~everymask, data, data + high_err) return lows, highs # collect drawn items while looping over the three coordinates errlines, caplines, limmarks = [], [], [] # list of endpoint coordinates, used for auto-scaling coorderrs = [] # define the markers used for errorbar caps and limits below # the dictionary key is mapped by the `i_xyz` helper dictionary capmarker = {0: '|', 1: '|', 2: '_'} i_xyz = {'x': 0, 'y': 1, 'z': 2} # Calculate marker size from points to quiver length. Because these are # not markers, and 3D Axes do not use the normal transform stack, this # is a bit involved. Since the quiver arrows will change size as the # scene is rotated, they are given a standard size based on viewing # them directly in planar form. quiversize = eb_cap_style.get('markersize', rcParams['lines.markersize']) ** 2 quiversize *= self.figure.dpi / 72 quiversize = self.transAxes.inverted().transform([ (0, 0), (quiversize, quiversize)]) quiversize = np.mean(np.diff(quiversize, axis=0)) # quiversize is now in Axes coordinates, and to convert back to data # coordinates, we need to run it through the inverse 3D transform. For # consistency, this uses a fixed azimuth and elevation. with cbook._setattr_cm(self, azim=0, elev=0): invM = np.linalg.inv(self.get_proj()) # azim=elev=0 produces the Y-Z plane, so quiversize in 2D 'x' is 'y' in # 3D, hence the 1 index. quiversize = np.dot(invM, np.array([quiversize, 0, 0, 0]))[1] # Quivers use a fixed 15-degree arrow head, so scale up the length so # that the size corresponds to the base. In other words, this constant # corresponds to the equation tan(15) = (base / 2) / (arrow length). quiversize *= 1.8660254037844388 eb_quiver_style = {**eb_cap_style, 'length': quiversize, 'arrow_length_ratio': 1} eb_quiver_style.pop('markersize', None) # loop over x-, y-, and z-direction and draw relevant elements for zdir, data, err, lolims, uplims in zip( ['x', 'y', 'z'], [x, y, z], [xerr, yerr, zerr], [xlolims, ylolims, zlolims], [xuplims, yuplims, zuplims]): dir_vector = art3d.get_dir_vector(zdir) i_zdir = i_xyz[zdir] if err is None: continue if not np.iterable(err): err = [err] * len(data) err = np.atleast_1d(err) # arrays fine here, they are booleans and hence not units lolims = np.broadcast_to(lolims, len(data)).astype(bool) uplims = np.broadcast_to(uplims, len(data)).astype(bool) # a nested list structure that expands to (xl,xh),(yl,yh),(zl,zh), # where x/y/z and l/h correspond to dimensions and low/high # positions of errorbars in a dimension we're looping over coorderr = [ _extract_errs(err * dir_vector[i], coord, lolims, uplims) for i, coord in enumerate([x, y, z])] (xl, xh), (yl, yh), (zl, zh) = coorderr # draws capmarkers - flat caps orthogonal to the error bars nolims = ~(lolims | uplims) if nolims.any() and capsize > 0: lo_caps_xyz = _apply_mask([xl, yl, zl], nolims & everymask) hi_caps_xyz = _apply_mask([xh, yh, zh], nolims & everymask) # setting '_' for z-caps and '|' for x- and y-caps; # these markers will rotate as the viewing angle changes cap_lo = art3d.Line3D(*lo_caps_xyz, ls='', marker=capmarker[i_zdir], **eb_cap_style) cap_hi = art3d.Line3D(*hi_caps_xyz, ls='', marker=capmarker[i_zdir], **eb_cap_style) self.add_line(cap_lo) self.add_line(cap_hi) caplines.append(cap_lo) caplines.append(cap_hi) if lolims.any(): xh0, yh0, zh0 = _apply_mask([xh, yh, zh], lolims & everymask) self.quiver(xh0, yh0, zh0, *dir_vector, **eb_quiver_style) if uplims.any(): xl0, yl0, zl0 = _apply_mask([xl, yl, zl], uplims & everymask) self.quiver(xl0, yl0, zl0, *-dir_vector, **eb_quiver_style) errline = art3d.Line3DCollection(np.array(coorderr).T, **eb_lines_style) self.add_collection(errline) errlines.append(errline) coorderrs.append(coorderr) coorderrs = np.array(coorderrs) def _digout_minmax(err_arr, coord_label): return (np.nanmin(err_arr[:, i_xyz[coord_label], :, :]), np.nanmax(err_arr[:, i_xyz[coord_label], :, :])) minx, maxx = _digout_minmax(coorderrs, 'x') miny, maxy = _digout_minmax(coorderrs, 'y') minz, maxz = _digout_minmax(coorderrs, 'z') self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data) # Adapting errorbar containers for 3d case, assuming z-axis points "up" errorbar_container = mcontainer.ErrorbarContainer( (data_line, tuple(caplines), tuple(errlines)), has_xerr=(xerr is not None or yerr is not None), has_yerr=(zerr is not None), label=label) self.containers.append(errorbar_container) return errlines, caplines, limmarks def get_tightbbox(self, renderer, call_axes_locator=True, bbox_extra_artists=None, *, for_layout_only=False): ret = super().get_tightbbox(renderer, call_axes_locator=call_axes_locator, bbox_extra_artists=bbox_extra_artists, for_layout_only=for_layout_only) batch = [ret] if self._axis3don: for axis in self._get_axis_list(): if axis.get_visible(): try: axis_bb = axis.get_tightbbox( renderer, for_layout_only=for_layout_only ) except TypeError: # in case downstream library has redefined axis: axis_bb = axis.get_tightbbox(renderer) if axis_bb: batch.append(axis_bb) return mtransforms.Bbox.union(batch) @_preprocess_data() def stem(self, x, y, z, *, linefmt='C0-', markerfmt='C0o', basefmt='C3-', bottom=0, label=None, orientation='z'): """ Create a 3D stem plot. A stem plot draws lines perpendicular to a baseline, and places markers at the heads. By default, the baseline is defined by *x* and *y*, and stems are drawn vertically from *bottom* to *z*. Parameters ---------- x, y, z : array-like The positions of the heads of the stems. The stems are drawn along the *orientation*-direction from the baseline at *bottom* (in the *orientation*-coordinate) to the heads. By default, the *x* and *y* positions are used for the baseline and *z* for the head position, but this can be changed by *orientation*. linefmt : str, default: 'C0-' A string defining the properties of the vertical lines. Usually, this will be a color or a color and a linestyle: ========= ============= Character Line Style ========= ============= ``'-'`` solid line ``'--'`` dashed line ``'-.'`` dash-dot line ``':'`` dotted line ========= ============= Note: While it is technically possible to specify valid formats other than color or color and linestyle (e.g. 'rx' or '-.'), this is beyond the intention of the method and will most likely not result in a reasonable plot. markerfmt : str, default: 'C0o' A string defining the properties of the markers at the stem heads. basefmt : str, default: 'C3-' A format string defining the properties of the baseline. bottom : float, default: 0 The position of the baseline, in *orientation*-coordinates. label : str, default: None The label to use for the stems in legends. orientation : {'x', 'y', 'z'}, default: 'z' The direction along which stems are drawn. data : indexable object, optional DATA_PARAMETER_PLACEHOLDER Returns ------- `.StemContainer` The container may be treated like a tuple (*markerline*, *stemlines*, *baseline*) Examples -------- .. plot:: gallery/mplot3d/stem3d_demo.py """ from matplotlib.container import StemContainer had_data = self.has_data() _api.check_in_list(['x', 'y', 'z'], orientation=orientation) xlim = (np.min(x), np.max(x)) ylim = (np.min(y), np.max(y)) zlim = (np.min(z), np.max(z)) # Determine the appropriate plane for the baseline and the direction of # stemlines based on the value of orientation. if orientation == 'x': basex, basexlim = y, ylim basey, baseylim = z, zlim lines = [[(bottom, thisy, thisz), (thisx, thisy, thisz)] for thisx, thisy, thisz in zip(x, y, z)] elif orientation == 'y': basex, basexlim = x, xlim basey, baseylim = z, zlim lines = [[(thisx, bottom, thisz), (thisx, thisy, thisz)] for thisx, thisy, thisz in zip(x, y, z)] else: basex, basexlim = x, xlim basey, baseylim = y, ylim lines = [[(thisx, thisy, bottom), (thisx, thisy, thisz)] for thisx, thisy, thisz in zip(x, y, z)] # Determine style for stem lines. linestyle, linemarker, linecolor = _process_plot_format(linefmt) if linestyle is None: linestyle = rcParams['lines.linestyle'] # Plot everything in required order. baseline, = self.plot(basex, basey, basefmt, zs=bottom, zdir=orientation, label='_nolegend_') stemlines = art3d.Line3DCollection( lines, linestyles=linestyle, colors=linecolor, label='_nolegend_') self.add_collection(stemlines) markerline, = self.plot(x, y, z, markerfmt, label='_nolegend_') stem_container = StemContainer((markerline, stemlines, baseline), label=label) self.add_container(stem_container) jx, jy, jz = art3d.juggle_axes(basexlim, baseylim, [bottom, bottom], orientation) self.auto_scale_xyz([*jx, *xlim], [*jy, *ylim], [*jz, *zlim], had_data) return stem_container stem3D = stem def get_test_data(delta=0.05): """Return a tuple X, Y, Z with a test data set.""" x = y = np.arange(-3.0, 3.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi) Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) / (2 * np.pi * 0.5 * 1.5)) Z = Z2 - Z1 X = X * 10 Y = Y * 10 Z = Z * 500 return X, Y, Z