import numpy as np import matplotlib.pyplot as plt import matplotlib.projections as mprojections import matplotlib.transforms as mtransforms from matplotlib.testing.decorators import image_comparison from mpl_toolkits.axisartist.axislines import Subplot from mpl_toolkits.axisartist.floating_axes import ( FloatingSubplot, GridHelperCurveLinear) from mpl_toolkits.axisartist.grid_finder import FixedLocator from mpl_toolkits.axisartist import angle_helper def test_subplot(): fig = plt.figure(figsize=(5, 5)) ax = Subplot(fig, 111) fig.add_subplot(ax) # Rather high tolerance to allow ongoing work with floating axes internals; # remove when image is regenerated. @image_comparison(['curvelinear3.png'], style='default', tol=5) def test_curvelinear3(): fig = plt.figure(figsize=(5, 5)) tr = (mtransforms.Affine2D().scale(np.pi / 180, 1) + mprojections.PolarAxes.PolarTransform()) grid_locator1 = angle_helper.LocatorDMS(15) tick_formatter1 = angle_helper.FormatterDMS() grid_locator2 = FixedLocator([2, 4, 6, 8, 10]) grid_helper = GridHelperCurveLinear(tr, extremes=(0, 360, 10, 3), grid_locator1=grid_locator1, grid_locator2=grid_locator2, tick_formatter1=tick_formatter1, tick_formatter2=None) ax1 = FloatingSubplot(fig, 111, grid_helper=grid_helper) fig.add_subplot(ax1) r_scale = 10 tr2 = mtransforms.Affine2D().scale(1, 1 / r_scale) + tr grid_locator2 = FixedLocator([30, 60, 90]) grid_helper2 = GridHelperCurveLinear(tr2, extremes=(0, 360, 10 * r_scale, 3 * r_scale), grid_locator2=grid_locator2) ax1.axis["right"] = axis = grid_helper2.new_fixed_axis("right", axes=ax1) ax1.axis["left"].label.set_text("Test 1") ax1.axis["right"].label.set_text("Test 2") for an in ["left", "right"]: ax1.axis[an].set_visible(False) axis = grid_helper.new_floating_axis(1, 7, axes=ax1, axis_direction="bottom") ax1.axis["z"] = axis axis.toggle(all=True, label=True) axis.label.set_text("z = ?") axis.label.set_visible(True) axis.line.set_color("0.5") ax2 = ax1.get_aux_axes(tr) xx, yy = [67, 90, 75, 30], [2, 5, 8, 4] ax2.scatter(xx, yy) l, = ax2.plot(xx, yy, "k-") l.set_clip_path(ax1.patch) # Rather high tolerance to allow ongoing work with floating axes internals; # remove when image is regenerated. @image_comparison(['curvelinear4.png'], style='default', tol=0.9) def test_curvelinear4(): # Remove this line when this test image is regenerated. plt.rcParams['text.kerning_factor'] = 6 fig = plt.figure(figsize=(5, 5)) tr = (mtransforms.Affine2D().scale(np.pi / 180, 1) + mprojections.PolarAxes.PolarTransform()) grid_locator1 = angle_helper.LocatorDMS(5) tick_formatter1 = angle_helper.FormatterDMS() grid_locator2 = FixedLocator([2, 4, 6, 8, 10]) grid_helper = GridHelperCurveLinear(tr, extremes=(120, 30, 10, 0), grid_locator1=grid_locator1, grid_locator2=grid_locator2, tick_formatter1=tick_formatter1, tick_formatter2=None) ax1 = FloatingSubplot(fig, 111, grid_helper=grid_helper) fig.add_subplot(ax1) ax1.axis["left"].label.set_text("Test 1") ax1.axis["right"].label.set_text("Test 2") for an in ["top"]: ax1.axis[an].set_visible(False) axis = grid_helper.new_floating_axis(1, 70, axes=ax1, axis_direction="bottom") ax1.axis["z"] = axis axis.toggle(all=True, label=True) axis.label.set_axis_direction("top") axis.label.set_text("z = ?") axis.label.set_visible(True) axis.line.set_color("0.5") ax2 = ax1.get_aux_axes(tr) xx, yy = [67, 90, 75, 30], [2, 5, 8, 4] ax2.scatter(xx, yy) l, = ax2.plot(xx, yy, "k-") l.set_clip_path(ax1.patch) def test_axis_direction(): # Check that axis direction is propagated on a floating axis fig = plt.figure() ax = Subplot(fig, 111) fig.add_subplot(ax) ax.axis['y'] = ax.new_floating_axis(nth_coord=1, value=0, axis_direction='left') assert ax.axis['y']._axis_direction == 'left'