#!/usr/bin/env python # Copyright (c) 2017-2019, Intel Corporation # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Intel Corporation nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import division, absolute_import, print_function import numpy as np from numpy.testing import ( TestCase, run_module_suite, assert_, assert_raises, assert_equal, assert_warns, assert_allclose) from numpy import random as rnd import sys import warnings import mkl_fft reps_64 = (2**11)*np.finfo(np.float64).eps reps_32 = (2**11)*np.finfo(np.float32).eps atol_64 = (2**9)*np.finfo(np.float64).eps atol_32 = (2**9)*np.finfo(np.float32).eps def _get_rtol_atol(x): dt = x.dtype if dt == np.float64 or dt == np.complex128: return reps_64, atol_64 elif dt == np.float32 or dt == np.complex64: return reps_32, atol_32 else: assert (dt == np.float64 or dt == np.complex128 or dt == np.float32 or dt == np.complex64), "Unexpected dtype {}".format(dt) return reps_64, atol_64 class Test_mklfft_matrix(TestCase): def setUp(self): rnd.seed(123456) self.md = rnd.randn(256, 256) self.mf = self.md.astype(np.float32) self.mz = rnd.randn(256, 256*2).view(np.complex128) self.mc = self.mz.astype(np.complex64) def test_matrix1(self): """fftn equals repeated fft""" for ar in [self.md, self.mz, self.mf, self.mc]: r_tol, a_tol = _get_rtol_atol(ar) d = ar.copy() t1 = mkl_fft.fftn(d) t2 = mkl_fft.fft(mkl_fft.fft(d, axis=0), axis=1) t3 = mkl_fft.fft(mkl_fft.fft(d, axis=1), axis=0) assert_allclose(t1, t2, rtol=r_tol, atol=a_tol, err_msg = "failed test for dtype {}, max abs diff: {}".format(d.dtype, np.max(np.abs(t1-t2)))) assert_allclose(t1, t3, rtol=r_tol, atol=a_tol, err_msg = "failed test for dtype {}, max abs diff: {}".format(d.dtype, np.max(np.abs(t1-t3)))) def test_matrix2(self): """ifftn(fftn(x)) is x""" for ar in [self.md, self.mz, self.mf, self.mc]: d = ar.copy() r_tol, a_tol = _get_rtol_atol(d) t = mkl_fft.ifftn(mkl_fft.fftn(d)) assert_allclose(d, t, rtol=r_tol, atol=a_tol, err_msg = "failed test for dtype {}, max abs diff: {}".format(d.dtype, np.max(np.abs(d-t)))) def test_matrix3(self): """fftn(ifftn(x)) is x""" for ar in [self.md, self.mz, self.mf, self.mc]: d = ar.copy() r_tol, a_tol = _get_rtol_atol(d) t = mkl_fft.fftn(mkl_fft.ifftn(d)) assert_allclose(d, t, rtol=r_tol, atol=a_tol, err_msg = "failed test for dtype {}, max abs diff: {}".format(d.dtype, np.max(np.abs(d-t)))) def test_matrix4(self): """fftn of strided array is same as fftn of a contiguous copy""" for ar in [self.md, self.mz, self.mf, self.mc]: r_tol, a_tol = _get_rtol_atol(ar) d_strided = ar[::2,::2] d_contig = d_strided.copy() t_strided = mkl_fft.fftn(d_strided) t_contig = mkl_fft.fftn(d_contig) assert_allclose(t_strided, t_contig, rtol=r_tol, atol=a_tol) def test_matrix5(self): """fftn of strided array is same as fftn of a contiguous copy""" rs = rnd.RandomState(1234) x = rs.randn(6, 11, 12, 13) y = x[::-2, :, :, ::3] r_tol, a_tol = _get_rtol_atol(y) f = mkl_fft.fftn(y, axes=(1,2)) for i0 in range(y.shape[0]): for i3 in range(y.shape[3]): assert_allclose( f[i0, :, :, i3], mkl_fft.fftn(y[i0, :, : , i3]), rtol=r_tol, atol=a_tol ) class Test_Regressions(TestCase): def setUp(self): rnd.seed(123456) self.ad = rnd.randn(32, 17, 23) self.af = self.ad.astype(np.float32) self.az = rnd.randn(32, 17, 23*2).view(np.complex128) self.ac = self.az.astype(np.complex64) def test_cf_contig(self): """fft of F-contiguous array is the same as of C-contiguous with same data""" for ar in [self.ad, self.af, self.az, self.ac]: r_tol, a_tol = _get_rtol_atol(ar) d_ccont = ar.copy() d_fcont = np.asfortranarray(d_ccont) for a in range(ar.ndim): f1 = mkl_fft.fft(d_ccont, axis=a) f2 = mkl_fft.fft(d_fcont, axis=a) assert_allclose(f1, f2, rtol=r_tol, atol=a_tol) def test_rfftn_numpy(self): """Test that rfftn_numpy works as expected""" axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)] for x in [self.ad, self.af]: for a in axes: r_tol, a_tol = _get_rtol_atol(x) rfft_tr = mkl_fft.rfftn_numpy(np.transpose(x, a)) tr_rfft = np.transpose(mkl_fft.rfftn_numpy(x, axes=a), a) assert_allclose(rfft_tr, tr_rfft, rtol=r_tol, atol=a_tol) def test_gh64(self): """Test example from #64""" a = np.arange(12).reshape((3,4)) x = a.astype(np.cdouble) # should executed successfully r1 = mkl_fft.fftn(a, shape=None, axes=(-2,-1)) r2 = mkl_fft.fftn(x) r_tol, a_tol = _get_rtol_atol(x) assert_allclose(r1, r2, rtol=r_tol, atol=a_tol) class Test_Scales(TestCase): def setUp(self): pass def test_scale_1d_vector(self): X = np.ones(128, dtype='d') f1 = mkl_fft.fft(X, forward_scale=0.25) f2 = mkl_fft.fft(X) r_tol, a_tol = _get_rtol_atol(X) assert_allclose(4*f1, f2, rtol=r_tol, atol=a_tol) X1 = mkl_fft.ifft(f1, forward_scale=0.25) assert_allclose(X, X1, rtol=r_tol, atol=a_tol) f3 = mkl_fft.rfft(X, forward_scale=0.5) X2 = mkl_fft.irfft(f3, forward_scale=0.5) assert_allclose(X, X2, rtol=r_tol, atol=a_tol) def test_scale_1d_array(self): X = np.ones((8, 4, 4,), dtype='d') f1 = mkl_fft.fft(X, axis=1, forward_scale=0.25) f2 = mkl_fft.fft(X, axis=1) r_tol, a_tol = _get_rtol_atol(X) assert_allclose(4*f1, f2, rtol=r_tol, atol=a_tol) X1 = mkl_fft.ifft(f1, axis=1, forward_scale=0.25) assert_allclose(X, X1, rtol=r_tol, atol=a_tol) f3 = mkl_fft.rfft(X, axis=0, forward_scale=0.5) X2 = mkl_fft.irfft(f3, axis=0, forward_scale=0.5) assert_allclose(X, X2, rtol=r_tol, atol=a_tol) def test_scale_nd(self): X = np.empty((2, 4, 8, 16), dtype='d') X.flat[:] = np.cbrt(np.arange(0, X.size, dtype=X.dtype)) f = mkl_fft.fftn(X) f_scale = mkl_fft.fftn(X, forward_scale=0.2) r_tol, a_tol = _get_rtol_atol(X) assert_allclose(f, 5*f_scale, rtol=r_tol, atol=a_tol) def test_scale_nd_axes(self): X = np.empty((4, 2, 16, 8), dtype='d') X.flat[:] = np.cbrt(np.arange(X.size, dtype=X.dtype)) f = mkl_fft.fftn(X, axes=(0, 1, 2, 3)) f_scale = mkl_fft.fftn(X, axes=(0, 1, 2, 3), forward_scale=0.2) r_tol, a_tol = _get_rtol_atol(X) assert_allclose(f, 5*f_scale, rtol=r_tol, atol=a_tol)