r""" Elliptic functions historically comprise the elliptic integrals and their inverses, and originate from the problem of computing the arc length of an ellipse. From a more modern point of view, an elliptic function is defined as a doubly periodic function, i.e. a function which satisfies .. math :: f(z + 2 \omega_1) = f(z + 2 \omega_2) = f(z) for some half-periods `\omega_1, \omega_2` with `\mathrm{Im}[\omega_1 / \omega_2] > 0`. The canonical elliptic functions are the Jacobi elliptic functions. More broadly, this section includes quasi-doubly periodic functions (such as the Jacobi theta functions) and other functions useful in the study of elliptic functions. Many different conventions for the arguments of elliptic functions are in use. It is even standard to use different parameterizations for different functions in the same text or software (and mpmath is no exception). The usual parameters are the elliptic nome `q`, which usually must satisfy `|q| < 1`; the elliptic parameter `m` (an arbitrary complex number); the elliptic modulus `k` (an arbitrary complex number); and the half-period ratio `\tau`, which usually must satisfy `\mathrm{Im}[\tau] > 0`. These quantities can be expressed in terms of each other using the following relations: .. math :: m = k^2 .. math :: \tau = i \frac{K(1-m)}{K(m)} .. math :: q = e^{i \pi \tau} .. math :: k = \frac{\vartheta_2^2(q)}{\vartheta_3^2(q)} In addition, an alternative definition is used for the nome in number theory, which we here denote by q-bar: .. math :: \bar{q} = q^2 = e^{2 i \pi \tau} For convenience, mpmath provides functions to convert between the various parameters (:func:`~mpmath.qfrom`, :func:`~mpmath.mfrom`, :func:`~mpmath.kfrom`, :func:`~mpmath.taufrom`, :func:`~mpmath.qbarfrom`). **References** 1. [AbramowitzStegun]_ 2. [WhittakerWatson]_ """ from .functions import defun, defun_wrapped @defun_wrapped def eta(ctx, tau): r""" Returns the Dedekind eta function of tau in the upper half-plane. >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> eta(1j); gamma(0.25) / (2*pi**0.75) (0.7682254223260566590025942 + 0.0j) 0.7682254223260566590025942 >>> tau = sqrt(2) + sqrt(5)*1j >>> eta(-1/tau); sqrt(-1j*tau) * eta(tau) (0.9022859908439376463573294 + 0.07985093673948098408048575j) (0.9022859908439376463573295 + 0.07985093673948098408048575j) >>> eta(tau+1); exp(pi*1j/12) * eta(tau) (0.4493066139717553786223114 + 0.3290014793877986663915939j) (0.4493066139717553786223114 + 0.3290014793877986663915939j) >>> f = lambda z: diff(eta, z) / eta(z) >>> chop(36*diff(f,tau)**2 - 24*diff(f,tau,2)*f(tau) + diff(f,tau,3)) 0.0 """ if ctx.im(tau) <= 0.0: raise ValueError("eta is only defined in the upper half-plane") q = ctx.expjpi(tau/12) return q * ctx.qp(q**24) def nome(ctx, m): m = ctx.convert(m) if not m: return m if m == ctx.one: return m if ctx.isnan(m): return m if ctx.isinf(m): if m == ctx.ninf: return type(m)(-1) else: return ctx.mpc(-1) a = ctx.ellipk(ctx.one-m) b = ctx.ellipk(m) v = ctx.exp(-ctx.pi*a/b) if not ctx._im(m) and ctx._re(m) < 1: if ctx._is_real_type(m): return v.real else: return v.real + 0j elif m == 2: v = ctx.mpc(0, v.imag) return v @defun_wrapped def qfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): r""" Returns the elliptic nome `q`, given any of `q, m, k, \tau, \bar{q}`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> qfrom(q=0.25) 0.25 >>> qfrom(m=mfrom(q=0.25)) 0.25 >>> qfrom(k=kfrom(q=0.25)) 0.25 >>> qfrom(tau=taufrom(q=0.25)) (0.25 + 0.0j) >>> qfrom(qbar=qbarfrom(q=0.25)) 0.25 """ if q is not None: return ctx.convert(q) if m is not None: return nome(ctx, m) if k is not None: return nome(ctx, ctx.convert(k)**2) if tau is not None: return ctx.expjpi(tau) if qbar is not None: return ctx.sqrt(qbar) @defun_wrapped def qbarfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): r""" Returns the number-theoretic nome `\bar q`, given any of `q, m, k, \tau, \bar{q}`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> qbarfrom(qbar=0.25) 0.25 >>> qbarfrom(q=qfrom(qbar=0.25)) 0.25 >>> qbarfrom(m=extraprec(20)(mfrom)(qbar=0.25)) # ill-conditioned 0.25 >>> qbarfrom(k=extraprec(20)(kfrom)(qbar=0.25)) # ill-conditioned 0.25 >>> qbarfrom(tau=taufrom(qbar=0.25)) (0.25 + 0.0j) """ if qbar is not None: return ctx.convert(qbar) if q is not None: return ctx.convert(q) ** 2 if m is not None: return nome(ctx, m) ** 2 if k is not None: return nome(ctx, ctx.convert(k)**2) ** 2 if tau is not None: return ctx.expjpi(2*tau) @defun_wrapped def taufrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): r""" Returns the elliptic half-period ratio `\tau`, given any of `q, m, k, \tau, \bar{q}`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> taufrom(tau=0.5j) (0.0 + 0.5j) >>> taufrom(q=qfrom(tau=0.5j)) (0.0 + 0.5j) >>> taufrom(m=mfrom(tau=0.5j)) (0.0 + 0.5j) >>> taufrom(k=kfrom(tau=0.5j)) (0.0 + 0.5j) >>> taufrom(qbar=qbarfrom(tau=0.5j)) (0.0 + 0.5j) """ if tau is not None: return ctx.convert(tau) if m is not None: m = ctx.convert(m) return ctx.j*ctx.ellipk(1-m)/ctx.ellipk(m) if k is not None: k = ctx.convert(k) return ctx.j*ctx.ellipk(1-k**2)/ctx.ellipk(k**2) if q is not None: return ctx.log(q) / (ctx.pi*ctx.j) if qbar is not None: qbar = ctx.convert(qbar) return ctx.log(qbar) / (2*ctx.pi*ctx.j) @defun_wrapped def kfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): r""" Returns the elliptic modulus `k`, given any of `q, m, k, \tau, \bar{q}`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> kfrom(k=0.25) 0.25 >>> kfrom(m=mfrom(k=0.25)) 0.25 >>> kfrom(q=qfrom(k=0.25)) 0.25 >>> kfrom(tau=taufrom(k=0.25)) (0.25 + 0.0j) >>> kfrom(qbar=qbarfrom(k=0.25)) 0.25 As `q \to 1` and `q \to -1`, `k` rapidly approaches `1` and `i \infty` respectively:: >>> kfrom(q=0.75) 0.9999999999999899166471767 >>> kfrom(q=-0.75) (0.0 + 7041781.096692038332790615j) >>> kfrom(q=1) 1 >>> kfrom(q=-1) (0.0 + +infj) """ if k is not None: return ctx.convert(k) if m is not None: return ctx.sqrt(m) if tau is not None: q = ctx.expjpi(tau) if qbar is not None: q = ctx.sqrt(qbar) if q == 1: return q if q == -1: return ctx.mpc(0,'inf') return (ctx.jtheta(2,0,q)/ctx.jtheta(3,0,q))**2 @defun_wrapped def mfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): r""" Returns the elliptic parameter `m`, given any of `q, m, k, \tau, \bar{q}`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> mfrom(m=0.25) 0.25 >>> mfrom(q=qfrom(m=0.25)) 0.25 >>> mfrom(k=kfrom(m=0.25)) 0.25 >>> mfrom(tau=taufrom(m=0.25)) (0.25 + 0.0j) >>> mfrom(qbar=qbarfrom(m=0.25)) 0.25 As `q \to 1` and `q \to -1`, `m` rapidly approaches `1` and `-\infty` respectively:: >>> mfrom(q=0.75) 0.9999999999999798332943533 >>> mfrom(q=-0.75) -49586681013729.32611558353 >>> mfrom(q=1) 1.0 >>> mfrom(q=-1) -inf The inverse nome as a function of `q` has an integer Taylor series expansion:: >>> taylor(lambda q: mfrom(q), 0, 7) [0.0, 16.0, -128.0, 704.0, -3072.0, 11488.0, -38400.0, 117632.0] """ if m is not None: return m if k is not None: return k**2 if tau is not None: q = ctx.expjpi(tau) if qbar is not None: q = ctx.sqrt(qbar) if q == 1: return ctx.convert(q) if q == -1: return q*ctx.inf v = (ctx.jtheta(2,0,q)/ctx.jtheta(3,0,q))**4 if ctx._is_real_type(q) and q < 0: v = v.real return v jacobi_spec = { 'sn' : ([3],[2],[1],[4], 'sin', 'tanh'), 'cn' : ([4],[2],[2],[4], 'cos', 'sech'), 'dn' : ([4],[3],[3],[4], '1', 'sech'), 'ns' : ([2],[3],[4],[1], 'csc', 'coth'), 'nc' : ([2],[4],[4],[2], 'sec', 'cosh'), 'nd' : ([3],[4],[4],[3], '1', 'cosh'), 'sc' : ([3],[4],[1],[2], 'tan', 'sinh'), 'sd' : ([3,3],[2,4],[1],[3], 'sin', 'sinh'), 'cd' : ([3],[2],[2],[3], 'cos', '1'), 'cs' : ([4],[3],[2],[1], 'cot', 'csch'), 'dc' : ([2],[3],[3],[2], 'sec', '1'), 'ds' : ([2,4],[3,3],[3],[1], 'csc', 'csch'), 'cc' : None, 'ss' : None, 'nn' : None, 'dd' : None } @defun def ellipfun(ctx, kind, u=None, m=None, q=None, k=None, tau=None): try: S = jacobi_spec[kind] except KeyError: raise ValueError("First argument must be a two-character string " "containing 's', 'c', 'd' or 'n', e.g.: 'sn'") if u is None: def f(*args, **kwargs): return ctx.ellipfun(kind, *args, **kwargs) f.__name__ = kind return f prec = ctx.prec try: ctx.prec += 10 u = ctx.convert(u) q = ctx.qfrom(m=m, q=q, k=k, tau=tau) if S is None: v = ctx.one + 0*q*u elif q == ctx.zero: if S[4] == '1': v = ctx.one else: v = getattr(ctx, S[4])(u) v += 0*q*u elif q == ctx.one: if S[5] == '1': v = ctx.one else: v = getattr(ctx, S[5])(u) v += 0*q*u else: t = u / ctx.jtheta(3, 0, q)**2 v = ctx.one for a in S[0]: v *= ctx.jtheta(a, 0, q) for b in S[1]: v /= ctx.jtheta(b, 0, q) for c in S[2]: v *= ctx.jtheta(c, t, q) for d in S[3]: v /= ctx.jtheta(d, t, q) finally: ctx.prec = prec return +v @defun_wrapped def kleinj(ctx, tau=None, **kwargs): r""" Evaluates the Klein j-invariant, which is a modular function defined for `\tau` in the upper half-plane as .. math :: J(\tau) = \frac{g_2^3(\tau)}{g_2^3(\tau) - 27 g_3^2(\tau)} where `g_2` and `g_3` are the modular invariants of the Weierstrass elliptic function, .. math :: g_2(\tau) = 60 \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} (m \tau+n)^{-4} g_3(\tau) = 140 \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} (m \tau+n)^{-6}. An alternative, common notation is that of the j-function `j(\tau) = 1728 J(\tau)`. **Plots** .. literalinclude :: /plots/kleinj.py .. image :: /plots/kleinj.png .. literalinclude :: /plots/kleinj2.py .. image :: /plots/kleinj2.png **Examples** Verifying the functional equation `J(\tau) = J(\tau+1) = J(-\tau^{-1})`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> tau = 0.625+0.75*j >>> tau = 0.625+0.75*j >>> kleinj(tau) (-0.1507492166511182267125242 + 0.07595948379084571927228948j) >>> kleinj(tau+1) (-0.1507492166511182267125242 + 0.07595948379084571927228948j) >>> kleinj(-1/tau) (-0.1507492166511182267125242 + 0.07595948379084571927228946j) The j-function has a famous Laurent series expansion in terms of the nome `\bar{q}`, `j(\tau) = \bar{q}^{-1} + 744 + 196884\bar{q} + \ldots`:: >>> mp.dps = 15 >>> taylor(lambda q: 1728*q*kleinj(qbar=q), 0, 5, singular=True) [1.0, 744.0, 196884.0, 21493760.0, 864299970.0, 20245856256.0] The j-function admits exact evaluation at special algebraic points related to the Heegner numbers 1, 2, 3, 7, 11, 19, 43, 67, 163:: >>> @extraprec(10) ... def h(n): ... v = (1+sqrt(n)*j) ... if n > 2: ... v *= 0.5 ... return v ... >>> mp.dps = 25 >>> for n in [1,2,3,7,11,19,43,67,163]: ... n, chop(1728*kleinj(h(n))) ... (1, 1728.0) (2, 8000.0) (3, 0.0) (7, -3375.0) (11, -32768.0) (19, -884736.0) (43, -884736000.0) (67, -147197952000.0) (163, -262537412640768000.0) Also at other special points, the j-function assumes explicit algebraic values, e.g.:: >>> chop(1728*kleinj(j*sqrt(5))) 1264538.909475140509320227 >>> identify(cbrt(_)) # note: not simplified '((100+sqrt(13520))/2)' >>> (50+26*sqrt(5))**3 1264538.909475140509320227 """ q = ctx.qfrom(tau=tau, **kwargs) t2 = ctx.jtheta(2,0,q) t3 = ctx.jtheta(3,0,q) t4 = ctx.jtheta(4,0,q) P = (t2**8 + t3**8 + t4**8)**3 Q = 54*(t2*t3*t4)**8 return P/Q def RF_calc(ctx, x, y, z, r): if y == z: return RC_calc(ctx, x, y, r) if x == z: return RC_calc(ctx, y, x, r) if x == y: return RC_calc(ctx, z, x, r) if not (ctx.isnormal(x) and ctx.isnormal(y) and ctx.isnormal(z)): if ctx.isnan(x) or ctx.isnan(y) or ctx.isnan(z): return x*y*z if ctx.isinf(x) or ctx.isinf(y) or ctx.isinf(z): return ctx.zero xm,ym,zm = x,y,z A0 = Am = (x+y+z)/3 Q = ctx.root(3*r, -6) * max(abs(A0-x),abs(A0-y),abs(A0-z)) g = ctx.mpf(0.25) pow4 = ctx.one m = 0 while 1: xs = ctx.sqrt(xm) ys = ctx.sqrt(ym) zs = ctx.sqrt(zm) lm = xs*ys + xs*zs + ys*zs Am1 = (Am+lm)*g xm, ym, zm = (xm+lm)*g, (ym+lm)*g, (zm+lm)*g if pow4 * Q < abs(Am): break Am = Am1 m += 1 pow4 *= g t = pow4/Am X = (A0-x)*t Y = (A0-y)*t Z = -X-Y E2 = X*Y-Z**2 E3 = X*Y*Z return ctx.power(Am,-0.5) * (9240-924*E2+385*E2**2+660*E3-630*E2*E3)/9240 def RC_calc(ctx, x, y, r, pv=True): if not (ctx.isnormal(x) and ctx.isnormal(y)): if ctx.isinf(x) or ctx.isinf(y): return 1/(x*y) if y == 0: return ctx.inf if x == 0: return ctx.pi / ctx.sqrt(y) / 2 raise ValueError # Cauchy principal value if pv and ctx._im(y) == 0 and ctx._re(y) < 0: return ctx.sqrt(x/(x-y)) * RC_calc(ctx, x-y, -y, r) if x == y: return 1/ctx.sqrt(x) extraprec = 2*max(0,-ctx.mag(x-y)+ctx.mag(x)) ctx.prec += extraprec if ctx._is_real_type(x) and ctx._is_real_type(y): x = ctx._re(x) y = ctx._re(y) a = ctx.sqrt(x/y) if x < y: b = ctx.sqrt(y-x) v = ctx.acos(a)/b else: b = ctx.sqrt(x-y) v = ctx.acosh(a)/b else: sx = ctx.sqrt(x) sy = ctx.sqrt(y) v = ctx.acos(sx/sy)/(ctx.sqrt((1-x/y))*sy) ctx.prec -= extraprec return v def RJ_calc(ctx, x, y, z, p, r, integration): """ With integration == 0, computes RJ only using Carlson's algorithm (may be wrong for some values). With integration == 1, uses an initial integration to make sure Carlson's algorithm is correct. With integration == 2, uses only integration. """ if not (ctx.isnormal(x) and ctx.isnormal(y) and \ ctx.isnormal(z) and ctx.isnormal(p)): if ctx.isnan(x) or ctx.isnan(y) or ctx.isnan(z) or ctx.isnan(p): return x*y*z if ctx.isinf(x) or ctx.isinf(y) or ctx.isinf(z) or ctx.isinf(p): return ctx.zero if not p: return ctx.inf if (not x) + (not y) + (not z) > 1: return ctx.inf # Check conditions and fall back on integration for argument # reduction if needed. The following conditions might be needlessly # restrictive. initial_integral = ctx.zero if integration >= 1: ok = (x.real >= 0 and y.real >= 0 and z.real >= 0 and p.real > 0) if not ok: if x == p or y == p or z == p: ok = True if not ok: if p.imag != 0 or p.real >= 0: if (x.imag == 0 and x.real >= 0 and ctx.conj(y) == z): ok = True if (y.imag == 0 and y.real >= 0 and ctx.conj(x) == z): ok = True if (z.imag == 0 and z.real >= 0 and ctx.conj(x) == y): ok = True if not ok or (integration == 2): N = ctx.ceil(-min(x.real, y.real, z.real, p.real)) + 1 # Integrate around any singularities if all((t.imag >= 0 or t.real > 0) for t in [x, y, z, p]): margin = ctx.j elif all((t.imag < 0 or t.real > 0) for t in [x, y, z, p]): margin = -ctx.j else: margin = 1 # Go through the upper half-plane, but low enough that any # parameter starting in the lower plane doesn't cross the # branch cut for t in [x, y, z, p]: if t.imag >= 0 or t.real > 0: continue margin = min(margin, abs(t.imag) * 0.5) margin *= ctx.j N += margin F = lambda t: 1/(ctx.sqrt(t+x)*ctx.sqrt(t+y)*ctx.sqrt(t+z)*(t+p)) if integration == 2: return 1.5 * ctx.quad(F, [0, N, ctx.inf]) initial_integral = 1.5 * ctx.quad(F, [0, N]) x += N; y += N; z += N; p += N xm,ym,zm,pm = x,y,z,p A0 = Am = (x + y + z + 2*p)/5 delta = (p-x)*(p-y)*(p-z) Q = ctx.root(0.25*r, -6) * max(abs(A0-x),abs(A0-y),abs(A0-z),abs(A0-p)) m = 0 g = ctx.mpf(0.25) pow4 = ctx.one S = 0 while 1: sx = ctx.sqrt(xm) sy = ctx.sqrt(ym) sz = ctx.sqrt(zm) sp = ctx.sqrt(pm) lm = sx*sy + sx*sz + sy*sz Am1 = (Am+lm)*g xm = (xm+lm)*g; ym = (ym+lm)*g; zm = (zm+lm)*g; pm = (pm+lm)*g dm = (sp+sx) * (sp+sy) * (sp+sz) em = delta * ctx.power(4, -3*m) / dm**2 if pow4 * Q < abs(Am): break T = RC_calc(ctx, ctx.one, ctx.one+em, r) * pow4 / dm S += T pow4 *= g m += 1 Am = Am1 t = ctx.ldexp(1,-2*m) / Am X = (A0-x)*t Y = (A0-y)*t Z = (A0-z)*t P = (-X-Y-Z)/2 E2 = X*Y + X*Z + Y*Z - 3*P**2 E3 = X*Y*Z + 2*E2*P + 4*P**3 E4 = (2*X*Y*Z + E2*P + 3*P**3)*P E5 = X*Y*Z*P**2 P = 24024 - 5148*E2 + 2457*E2**2 + 4004*E3 - 4158*E2*E3 - 3276*E4 + 2772*E5 Q = 24024 v1 = g**m * ctx.power(Am, -1.5) * P/Q v2 = 6*S return initial_integral + v1 + v2 @defun def elliprf(ctx, x, y, z): r""" Evaluates the Carlson symmetric elliptic integral of the first kind .. math :: R_F(x,y,z) = \frac{1}{2} \int_0^{\infty} \frac{dt}{\sqrt{(t+x)(t+y)(t+z)}} which is defined for `x,y,z \notin (-\infty,0)`, and with at most one of `x,y,z` being zero. For real `x,y,z \ge 0`, the principal square root is taken in the integrand. For complex `x,y,z`, the principal square root is taken as `t \to \infty` and as `t \to 0` non-principal branches are chosen as necessary so as to make the integrand continuous. **Examples** Some basic values and limits:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> elliprf(0,1,1); pi/2 1.570796326794896619231322 1.570796326794896619231322 >>> elliprf(0,1,inf) 0.0 >>> elliprf(1,1,1) 1.0 >>> elliprf(2,2,2)**2 0.5 >>> elliprf(1,0,0); elliprf(0,0,1); elliprf(0,1,0); elliprf(0,0,0) +inf +inf +inf +inf Representing complete elliptic integrals in terms of `R_F`:: >>> m = mpf(0.75) >>> ellipk(m); elliprf(0,1-m,1) 2.156515647499643235438675 2.156515647499643235438675 >>> ellipe(m); elliprf(0,1-m,1)-m*elliprd(0,1-m,1)/3 1.211056027568459524803563 1.211056027568459524803563 Some symmetries and argument transformations:: >>> x,y,z = 2,3,4 >>> elliprf(x,y,z); elliprf(y,x,z); elliprf(z,y,x) 0.5840828416771517066928492 0.5840828416771517066928492 0.5840828416771517066928492 >>> k = mpf(100000) >>> elliprf(k*x,k*y,k*z); k**(-0.5) * elliprf(x,y,z) 0.001847032121923321253219284 0.001847032121923321253219284 >>> l = sqrt(x*y) + sqrt(y*z) + sqrt(z*x) >>> elliprf(x,y,z); 2*elliprf(x+l,y+l,z+l) 0.5840828416771517066928492 0.5840828416771517066928492 >>> elliprf((x+l)/4,(y+l)/4,(z+l)/4) 0.5840828416771517066928492 Comparing with numerical integration:: >>> x,y,z = 2,3,4 >>> elliprf(x,y,z) 0.5840828416771517066928492 >>> f = lambda t: 0.5*((t+x)*(t+y)*(t+z))**(-0.5) >>> q = extradps(25)(quad) >>> q(f, [0,inf]) 0.5840828416771517066928492 With the following arguments, the square root in the integrand becomes discontinuous at `t = 1/2` if the principal branch is used. To obtain the right value, `-\sqrt{r}` must be taken instead of `\sqrt{r}` on `t \in (0, 1/2)`:: >>> x,y,z = j-1,j,0 >>> elliprf(x,y,z) (0.7961258658423391329305694 - 1.213856669836495986430094j) >>> -q(f, [0,0.5]) + q(f, [0.5,inf]) (0.7961258658423391329305694 - 1.213856669836495986430094j) The so-called *first lemniscate constant*, a transcendental number:: >>> elliprf(0,1,2) 1.31102877714605990523242 >>> extradps(25)(quad)(lambda t: 1/sqrt(1-t**4), [0,1]) 1.31102877714605990523242 >>> gamma('1/4')**2/(4*sqrt(2*pi)) 1.31102877714605990523242 **References** 1. [Carlson]_ 2. [DLMF]_ Chapter 19. Elliptic Integrals """ x = ctx.convert(x) y = ctx.convert(y) z = ctx.convert(z) prec = ctx.prec try: ctx.prec += 20 tol = ctx.eps * 2**10 v = RF_calc(ctx, x, y, z, tol) finally: ctx.prec = prec return +v @defun def elliprc(ctx, x, y, pv=True): r""" Evaluates the degenerate Carlson symmetric elliptic integral of the first kind .. math :: R_C(x,y) = R_F(x,y,y) = \frac{1}{2} \int_0^{\infty} \frac{dt}{(t+y) \sqrt{(t+x)}}. If `y \in (-\infty,0)`, either a value defined by continuity, or with *pv=True* the Cauchy principal value, can be computed. If `x \ge 0, y > 0`, the value can be expressed in terms of elementary functions as .. math :: R_C(x,y) = \begin{cases} \dfrac{1}{\sqrt{y-x}} \cos^{-1}\left(\sqrt{\dfrac{x}{y}}\right), & x < y \\ \dfrac{1}{\sqrt{y}}, & x = y \\ \dfrac{1}{\sqrt{x-y}} \cosh^{-1}\left(\sqrt{\dfrac{x}{y}}\right), & x > y \\ \end{cases}. **Examples** Some special values and limits:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> elliprc(1,2)*4; elliprc(0,1)*2; +pi 3.141592653589793238462643 3.141592653589793238462643 3.141592653589793238462643 >>> elliprc(1,0) +inf >>> elliprc(5,5)**2 0.2 >>> elliprc(1,inf); elliprc(inf,1); elliprc(inf,inf) 0.0 0.0 0.0 Comparing with the elementary closed-form solution:: >>> elliprc('1/3', '1/5'); sqrt(7.5)*acosh(sqrt('5/3')) 2.041630778983498390751238 2.041630778983498390751238 >>> elliprc('1/5', '1/3'); sqrt(7.5)*acos(sqrt('3/5')) 1.875180765206547065111085 1.875180765206547065111085 Comparing with numerical integration:: >>> q = extradps(25)(quad) >>> elliprc(2, -3, pv=True) 0.3333969101113672670749334 >>> elliprc(2, -3, pv=False) (0.3333969101113672670749334 + 0.7024814731040726393156375j) >>> 0.5*q(lambda t: 1/(sqrt(t+2)*(t-3)), [0,3-j,6,inf]) (0.3333969101113672670749334 + 0.7024814731040726393156375j) """ x = ctx.convert(x) y = ctx.convert(y) prec = ctx.prec try: ctx.prec += 20 tol = ctx.eps * 2**10 v = RC_calc(ctx, x, y, tol, pv) finally: ctx.prec = prec return +v @defun def elliprj(ctx, x, y, z, p, integration=1): r""" Evaluates the Carlson symmetric elliptic integral of the third kind .. math :: R_J(x,y,z,p) = \frac{3}{2} \int_0^{\infty} \frac{dt}{(t+p)\sqrt{(t+x)(t+y)(t+z)}}. Like :func:`~mpmath.elliprf`, the branch of the square root in the integrand is defined so as to be continuous along the path of integration for complex values of the arguments. **Examples** Some values and limits:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> elliprj(1,1,1,1) 1.0 >>> elliprj(2,2,2,2); 1/(2*sqrt(2)) 0.3535533905932737622004222 0.3535533905932737622004222 >>> elliprj(0,1,2,2) 1.067937989667395702268688 >>> 3*(2*gamma('5/4')**2-pi**2/gamma('1/4')**2)/(sqrt(2*pi)) 1.067937989667395702268688 >>> elliprj(0,1,1,2); 3*pi*(2-sqrt(2))/4 1.380226776765915172432054 1.380226776765915172432054 >>> elliprj(1,3,2,0); elliprj(0,1,1,0); elliprj(0,0,0,0) +inf +inf +inf >>> elliprj(1,inf,1,0); elliprj(1,1,1,inf) 0.0 0.0 >>> chop(elliprj(1+j, 1-j, 1, 1)) 0.8505007163686739432927844 Scale transformation:: >>> x,y,z,p = 2,3,4,5 >>> k = mpf(100000) >>> elliprj(k*x,k*y,k*z,k*p); k**(-1.5)*elliprj(x,y,z,p) 4.521291677592745527851168e-9 4.521291677592745527851168e-9 Comparing with numerical integration:: >>> elliprj(1,2,3,4) 0.2398480997495677621758617 >>> f = lambda t: 1/((t+4)*sqrt((t+1)*(t+2)*(t+3))) >>> 1.5*quad(f, [0,inf]) 0.2398480997495677621758617 >>> elliprj(1,2+1j,3,4-2j) (0.216888906014633498739952 + 0.04081912627366673332369512j) >>> f = lambda t: 1/((t+4-2j)*sqrt((t+1)*(t+2+1j)*(t+3))) >>> 1.5*quad(f, [0,inf]) (0.216888906014633498739952 + 0.04081912627366673332369511j) """ x = ctx.convert(x) y = ctx.convert(y) z = ctx.convert(z) p = ctx.convert(p) prec = ctx.prec try: ctx.prec += 20 tol = ctx.eps * 2**10 v = RJ_calc(ctx, x, y, z, p, tol, integration) finally: ctx.prec = prec return +v @defun def elliprd(ctx, x, y, z): r""" Evaluates the degenerate Carlson symmetric elliptic integral of the third kind or Carlson elliptic integral of the second kind `R_D(x,y,z) = R_J(x,y,z,z)`. See :func:`~mpmath.elliprj` for additional information. **Examples** >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> elliprd(1,2,3) 0.2904602810289906442326534 >>> elliprj(1,2,3,3) 0.2904602810289906442326534 The so-called *second lemniscate constant*, a transcendental number:: >>> elliprd(0,2,1)/3 0.5990701173677961037199612 >>> extradps(25)(quad)(lambda t: t**2/sqrt(1-t**4), [0,1]) 0.5990701173677961037199612 >>> gamma('3/4')**2/sqrt(2*pi) 0.5990701173677961037199612 """ return ctx.elliprj(x,y,z,z) @defun def elliprg(ctx, x, y, z): r""" Evaluates the Carlson completely symmetric elliptic integral of the second kind .. math :: R_G(x,y,z) = \frac{1}{4} \int_0^{\infty} \frac{t}{\sqrt{(t+x)(t+y)(t+z)}} \left( \frac{x}{t+x} + \frac{y}{t+y} + \frac{z}{t+z}\right) dt. **Examples** Evaluation for real and complex arguments:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> elliprg(0,1,1)*4; +pi 3.141592653589793238462643 3.141592653589793238462643 >>> elliprg(0,0.5,1) 0.6753219405238377512600874 >>> chop(elliprg(1+j, 1-j, 2)) 1.172431327676416604532822 A double integral that can be evaluated in terms of `R_G`:: >>> x,y,z = 2,3,4 >>> def f(t,u): ... st = fp.sin(t); ct = fp.cos(t) ... su = fp.sin(u); cu = fp.cos(u) ... return (x*(st*cu)**2 + y*(st*su)**2 + z*ct**2)**0.5 * st ... >>> nprint(mpf(fp.quad(f, [0,fp.pi], [0,2*fp.pi])/(4*fp.pi)), 13) 1.725503028069 >>> nprint(elliprg(x,y,z), 13) 1.725503028069 """ x = ctx.convert(x) y = ctx.convert(y) z = ctx.convert(z) zeros = (not x) + (not y) + (not z) if zeros == 3: return (x+y+z)*0 if zeros == 2: if x: return 0.5*ctx.sqrt(x) if y: return 0.5*ctx.sqrt(y) return 0.5*ctx.sqrt(z) if zeros == 1: if not z: x, z = z, x def terms(): T1 = 0.5*z*ctx.elliprf(x,y,z) T2 = -0.5*(x-z)*(y-z)*ctx.elliprd(x,y,z)/3 T3 = 0.5*ctx.sqrt(x)*ctx.sqrt(y)/ctx.sqrt(z) return T1,T2,T3 return ctx.sum_accurately(terms) @defun_wrapped def ellipf(ctx, phi, m): r""" Evaluates the Legendre incomplete elliptic integral of the first kind .. math :: F(\phi,m) = \int_0^{\phi} \frac{dt}{\sqrt{1-m \sin^2 t}} or equivalently .. math :: F(\phi,m) = \int_0^{\sin \phi} \frac{dt}{\left(\sqrt{1-t^2}\right)\left(\sqrt{1-mt^2}\right)}. The function reduces to a complete elliptic integral of the first kind (see :func:`~mpmath.ellipk`) when `\phi = \frac{\pi}{2}`; that is, .. math :: F\left(\frac{\pi}{2}, m\right) = K(m). In the defining integral, it is assumed that the principal branch of the square root is taken and that the path of integration avoids crossing any branch cuts. Outside `-\pi/2 \le \Re(\phi) \le \pi/2`, the function extends quasi-periodically as .. math :: F(\phi + n \pi, m) = 2 n K(m) + F(\phi,m), n \in \mathbb{Z}. **Plots** .. literalinclude :: /plots/ellipf.py .. image :: /plots/ellipf.png **Examples** Basic values and limits:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> ellipf(0,1) 0.0 >>> ellipf(0,0) 0.0 >>> ellipf(1,0); ellipf(2+3j,0) 1.0 (2.0 + 3.0j) >>> ellipf(1,1); log(sec(1)+tan(1)) 1.226191170883517070813061 1.226191170883517070813061 >>> ellipf(pi/2, -0.5); ellipk(-0.5) 1.415737208425956198892166 1.415737208425956198892166 >>> ellipf(pi/2+eps, 1); ellipf(-pi/2-eps, 1) +inf +inf >>> ellipf(1.5, 1) 3.340677542798311003320813 Comparing with numerical integration:: >>> z,m = 0.5, 1.25 >>> ellipf(z,m) 0.5287219202206327872978255 >>> quad(lambda t: (1-m*sin(t)**2)**(-0.5), [0,z]) 0.5287219202206327872978255 The arguments may be complex numbers:: >>> ellipf(3j, 0.5) (0.0 + 1.713602407841590234804143j) >>> ellipf(3+4j, 5-6j) (1.269131241950351323305741 - 0.3561052815014558335412538j) >>> z,m = 2+3j, 1.25 >>> k = 1011 >>> ellipf(z+pi*k,m); ellipf(z,m) + 2*k*ellipk(m) (4086.184383622179764082821 - 3003.003538923749396546871j) (4086.184383622179764082821 - 3003.003538923749396546871j) For `|\Re(z)| < \pi/2`, the function can be expressed as a hypergeometric series of two variables (see :func:`~mpmath.appellf1`):: >>> z,m = 0.5, 0.25 >>> ellipf(z,m) 0.5050887275786480788831083 >>> sin(z)*appellf1(0.5,0.5,0.5,1.5,sin(z)**2,m*sin(z)**2) 0.5050887275786480788831083 """ z = phi if not (ctx.isnormal(z) and ctx.isnormal(m)): if m == 0: return z + m if z == 0: return z * m if m == ctx.inf or m == ctx.ninf: return z/m raise ValueError x = z.real ctx.prec += max(0, ctx.mag(x)) pi = +ctx.pi away = abs(x) > pi/2 if m == 1: if away: return ctx.inf if away: d = ctx.nint(x/pi) z = z-pi*d P = 2*d*ctx.ellipk(m) else: P = 0 c, s = ctx.cos_sin(z) return s * ctx.elliprf(c**2, 1-m*s**2, 1) + P @defun_wrapped def ellipe(ctx, *args): r""" Called with a single argument `m`, evaluates the Legendre complete elliptic integral of the second kind, `E(m)`, defined by .. math :: E(m) = \int_0^{\pi/2} \sqrt{1-m \sin^2 t} \, dt \,=\, \frac{\pi}{2} \,_2F_1\left(\frac{1}{2}, -\frac{1}{2}, 1, m\right). Called with two arguments `\phi, m`, evaluates the incomplete elliptic integral of the second kind .. math :: E(\phi,m) = \int_0^{\phi} \sqrt{1-m \sin^2 t} \, dt = \int_0^{\sin z} \frac{\sqrt{1-mt^2}}{\sqrt{1-t^2}} \, dt. The incomplete integral reduces to a complete integral when `\phi = \frac{\pi}{2}`; that is, .. math :: E\left(\frac{\pi}{2}, m\right) = E(m). In the defining integral, it is assumed that the principal branch of the square root is taken and that the path of integration avoids crossing any branch cuts. Outside `-\pi/2 \le \Re(z) \le \pi/2`, the function extends quasi-periodically as .. math :: E(\phi + n \pi, m) = 2 n E(m) + E(\phi,m), n \in \mathbb{Z}. **Plots** .. literalinclude :: /plots/ellipe.py .. image :: /plots/ellipe.png **Examples for the complete integral** Basic values and limits:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> ellipe(0) 1.570796326794896619231322 >>> ellipe(1) 1.0 >>> ellipe(-1) 1.910098894513856008952381 >>> ellipe(2) (0.5990701173677961037199612 + 0.5990701173677961037199612j) >>> ellipe(inf) (0.0 + +infj) >>> ellipe(-inf) +inf Verifying the defining integral and hypergeometric representation:: >>> ellipe(0.5) 1.350643881047675502520175 >>> quad(lambda t: sqrt(1-0.5*sin(t)**2), [0, pi/2]) 1.350643881047675502520175 >>> pi/2*hyp2f1(0.5,-0.5,1,0.5) 1.350643881047675502520175 Evaluation is supported for arbitrary complex `m`:: >>> ellipe(0.5+0.25j) (1.360868682163129682716687 - 0.1238733442561786843557315j) >>> ellipe(3+4j) (1.499553520933346954333612 - 1.577879007912758274533309j) A definite integral:: >>> quad(ellipe, [0,1]) 1.333333333333333333333333 **Examples for the incomplete integral** Basic values and limits:: >>> ellipe(0,1) 0.0 >>> ellipe(0,0) 0.0 >>> ellipe(1,0) 1.0 >>> ellipe(2+3j,0) (2.0 + 3.0j) >>> ellipe(1,1); sin(1) 0.8414709848078965066525023 0.8414709848078965066525023 >>> ellipe(pi/2, -0.5); ellipe(-0.5) 1.751771275694817862026502 1.751771275694817862026502 >>> ellipe(pi/2, 1); ellipe(-pi/2, 1) 1.0 -1.0 >>> ellipe(1.5, 1) 0.9974949866040544309417234 Comparing with numerical integration:: >>> z,m = 0.5, 1.25 >>> ellipe(z,m) 0.4740152182652628394264449 >>> quad(lambda t: sqrt(1-m*sin(t)**2), [0,z]) 0.4740152182652628394264449 The arguments may be complex numbers:: >>> ellipe(3j, 0.5) (0.0 + 7.551991234890371873502105j) >>> ellipe(3+4j, 5-6j) (24.15299022574220502424466 + 75.2503670480325997418156j) >>> k = 35 >>> z,m = 2+3j, 1.25 >>> ellipe(z+pi*k,m); ellipe(z,m) + 2*k*ellipe(m) (48.30138799412005235090766 + 17.47255216721987688224357j) (48.30138799412005235090766 + 17.47255216721987688224357j) For `|\Re(z)| < \pi/2`, the function can be expressed as a hypergeometric series of two variables (see :func:`~mpmath.appellf1`):: >>> z,m = 0.5, 0.25 >>> ellipe(z,m) 0.4950017030164151928870375 >>> sin(z)*appellf1(0.5,0.5,-0.5,1.5,sin(z)**2,m*sin(z)**2) 0.4950017030164151928870376 """ if len(args) == 1: return ctx._ellipe(args[0]) else: phi, m = args z = phi if not (ctx.isnormal(z) and ctx.isnormal(m)): if m == 0: return z + m if z == 0: return z * m if m == ctx.inf or m == ctx.ninf: return ctx.inf raise ValueError x = z.real ctx.prec += max(0, ctx.mag(x)) pi = +ctx.pi away = abs(x) > pi/2 if away: d = ctx.nint(x/pi) z = z-pi*d P = 2*d*ctx.ellipe(m) else: P = 0 def terms(): c, s = ctx.cos_sin(z) x = c**2 y = 1-m*s**2 RF = ctx.elliprf(x, y, 1) RD = ctx.elliprd(x, y, 1) return s*RF, -m*s**3*RD/3 return ctx.sum_accurately(terms) + P @defun_wrapped def ellippi(ctx, *args): r""" Called with three arguments `n, \phi, m`, evaluates the Legendre incomplete elliptic integral of the third kind .. math :: \Pi(n; \phi, m) = \int_0^{\phi} \frac{dt}{(1-n \sin^2 t) \sqrt{1-m \sin^2 t}} = \int_0^{\sin \phi} \frac{dt}{(1-nt^2) \sqrt{1-t^2} \sqrt{1-mt^2}}. Called with two arguments `n, m`, evaluates the complete elliptic integral of the third kind `\Pi(n,m) = \Pi(n; \frac{\pi}{2},m)`. In the defining integral, it is assumed that the principal branch of the square root is taken and that the path of integration avoids crossing any branch cuts. Outside `-\pi/2 \le \Re(\phi) \le \pi/2`, the function extends quasi-periodically as .. math :: \Pi(n,\phi+k\pi,m) = 2k\Pi(n,m) + \Pi(n,\phi,m), k \in \mathbb{Z}. **Plots** .. literalinclude :: /plots/ellippi.py .. image :: /plots/ellippi.png **Examples for the complete integral** Some basic values and limits:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> ellippi(0,-5); ellipk(-5) 0.9555039270640439337379334 0.9555039270640439337379334 >>> ellippi(inf,2) 0.0 >>> ellippi(2,inf) 0.0 >>> abs(ellippi(1,5)) +inf >>> abs(ellippi(0.25,1)) +inf Evaluation in terms of simpler functions:: >>> ellippi(0.25,0.25); ellipe(0.25)/(1-0.25) 1.956616279119236207279727 1.956616279119236207279727 >>> ellippi(3,0); pi/(2*sqrt(-2)) (0.0 - 1.11072073453959156175397j) (0.0 - 1.11072073453959156175397j) >>> ellippi(-3,0); pi/(2*sqrt(4)) 0.7853981633974483096156609 0.7853981633974483096156609 **Examples for the incomplete integral** Basic values and limits:: >>> ellippi(0.25,-0.5); ellippi(0.25,pi/2,-0.5) 1.622944760954741603710555 1.622944760954741603710555 >>> ellippi(1,0,1) 0.0 >>> ellippi(inf,0,1) 0.0 >>> ellippi(0,0.25,0.5); ellipf(0.25,0.5) 0.2513040086544925794134591 0.2513040086544925794134591 >>> ellippi(1,1,1); (log(sec(1)+tan(1))+sec(1)*tan(1))/2 2.054332933256248668692452 2.054332933256248668692452 >>> ellippi(0.25, 53*pi/2, 0.75); 53*ellippi(0.25,0.75) 135.240868757890840755058 135.240868757890840755058 >>> ellippi(0.5,pi/4,0.5); 2*ellipe(pi/4,0.5)-1/sqrt(3) 0.9190227391656969903987269 0.9190227391656969903987269 Complex arguments are supported:: >>> ellippi(0.5, 5+6j-2*pi, -7-8j) (-0.3612856620076747660410167 + 0.5217735339984807829755815j) Some degenerate cases:: >>> ellippi(1,1) +inf >>> ellippi(1,0) +inf >>> ellippi(1,2,0) +inf >>> ellippi(1,2,1) +inf >>> ellippi(1,0,1) 0.0 """ if len(args) == 2: n, m = args complete = True z = phi = ctx.pi/2 else: n, phi, m = args complete = False z = phi if not (ctx.isnormal(n) and ctx.isnormal(z) and ctx.isnormal(m)): if ctx.isnan(n) or ctx.isnan(z) or ctx.isnan(m): raise ValueError if complete: if m == 0: if n == 1: return ctx.inf return ctx.pi/(2*ctx.sqrt(1-n)) if n == 0: return ctx.ellipk(m) if ctx.isinf(n) or ctx.isinf(m): return ctx.zero else: if z == 0: return z if ctx.isinf(n): return ctx.zero if ctx.isinf(m): return ctx.zero if ctx.isinf(n) or ctx.isinf(z) or ctx.isinf(m): raise ValueError if complete: if m == 1: if n == 1: return ctx.inf return -ctx.inf/ctx.sign(n-1) away = False else: x = z.real ctx.prec += max(0, ctx.mag(x)) pi = +ctx.pi away = abs(x) > pi/2 if away: d = ctx.nint(x/pi) z = z-pi*d P = 2*d*ctx.ellippi(n,m) if ctx.isinf(P): return ctx.inf else: P = 0 def terms(): if complete: c, s = ctx.zero, ctx.one else: c, s = ctx.cos_sin(z) x = c**2 y = 1-m*s**2 RF = ctx.elliprf(x, y, 1) RJ = ctx.elliprj(x, y, 1, 1-n*s**2) return s*RF, n*s**3*RJ/3 return ctx.sum_accurately(terms) + P