""" ========== Blockmodel ========== Example of creating a block model using the quotient_graph function in NX. Data used is the Hartford, CT drug users network:: @article{weeks2002social, title={Social networks of drug users in high-risk sites: Finding the connections}, url = {https://doi.org/10.1023/A:1015457400897}, doi = {10.1023/A:1015457400897}, author={Weeks, Margaret R and Clair, Scott and Borgatti, Stephen P and Radda, Kim and Schensul, Jean J}, journal={{AIDS and Behavior}}, volume={6}, number={2}, pages={193--206}, year={2002}, publisher={Springer} } """ from collections import defaultdict import matplotlib.pyplot as plt import networkx as nx import numpy as np from scipy.cluster import hierarchy from scipy.spatial import distance def create_hc(G): """Creates hierarchical cluster of graph G from distance matrix""" path_length = nx.all_pairs_shortest_path_length(G) distances = np.zeros((len(G), len(G))) for u, p in path_length: for v, d in p.items(): distances[u][v] = d # Create hierarchical cluster Y = distance.squareform(distances) Z = hierarchy.complete(Y) # Creates HC using farthest point linkage # This partition selection is arbitrary, for illustrive purposes membership = list(hierarchy.fcluster(Z, t=1.15)) # Create collection of lists for blockmodel partition = defaultdict(list) for n, p in zip(list(range(len(G))), membership): partition[p].append(n) return list(partition.values()) G = nx.read_edgelist("hartford_drug.edgelist") # Extract largest connected component into graph H H = G.subgraph(next(nx.connected_components(G))) # Makes life easier to have consecutively labeled integer nodes H = nx.convert_node_labels_to_integers(H) # Create parititions with hierarchical clustering partitions = create_hc(H) # Build blockmodel graph BM = nx.quotient_graph(H, partitions, relabel=True) # Draw original graph pos = nx.spring_layout(H, iterations=100, seed=83) # Seed for reproducibility plt.subplot(211) nx.draw(H, pos, with_labels=False, node_size=10) # Draw block model with weighted edges and nodes sized by number of internal nodes node_size = [BM.nodes[x]["nnodes"] * 10 for x in BM.nodes()] edge_width = [(2 * d["weight"]) for (u, v, d) in BM.edges(data=True)] # Set positions to mean of positions of internal nodes from original graph posBM = {} for n in BM: xy = np.array([pos[u] for u in BM.nodes[n]["graph"]]) posBM[n] = xy.mean(axis=0) plt.subplot(212) nx.draw(BM, posBM, node_size=node_size, width=edge_width, with_labels=False) plt.axis("off") plt.show()