""" ======== Circuits ======== Convert a Boolean circuit to an equivalent Boolean formula. A Boolean circuit can be exponentially more expressive than an equivalent formula in the worst case, since the circuit can reuse subcircuits multiple times, whereas a formula cannot reuse subformulas more than once. Thus creating a Boolean formula from a Boolean circuit in this way may be infeasible if the circuit is large. """ import matplotlib.pyplot as plt import networkx as nx def circuit_to_formula(circuit): # Convert the circuit to an equivalent formula. formula = nx.dag_to_branching(circuit) # Transfer the operator or variable labels for each node from the # circuit to the formula. for v in formula: source = formula.nodes[v]["source"] formula.nodes[v]["label"] = circuit.nodes[source]["label"] return formula def formula_to_string(formula): def _to_string(formula, root): # If there are no children, this is a variable node. label = formula.nodes[root]["label"] if not formula[root]: return label # Otherwise, this is an operator. children = formula[root] # If one child, the label must be a NOT operator. if len(children) == 1: child = nx.utils.arbitrary_element(children) return f"{label}({_to_string(formula, child)})" # NB "left" and "right" here are a little misleading: there is # no order on the children of a node. That's okay because the # Boolean AND and OR operators are symmetric. It just means that # the order of the operands cannot be predicted and hence the # function does not necessarily behave the same way on every # invocation. left, right = formula[root] left_subformula = _to_string(formula, left) right_subformula = _to_string(formula, right) return f"({left_subformula} {label} {right_subformula})" root = next(v for v, d in formula.in_degree() if d == 0) return _to_string(formula, root) ############################################################################### # Create an example Boolean circuit. # ---------------------------------- # # This circuit has a ∧ at the output and two ∨s at the next layer. # The third layer has a variable x that appears in the left ∨, a # variable y that appears in both the left and right ∨s, and a # negation for the variable z that appears as the sole node in the # fourth layer. circuit = nx.DiGraph() # Layer 0 circuit.add_node(0, label="∧", layer=0) # Layer 1 circuit.add_node(1, label="∨", layer=1) circuit.add_node(2, label="∨", layer=1) circuit.add_edge(0, 1) circuit.add_edge(0, 2) # Layer 2 circuit.add_node(3, label="x", layer=2) circuit.add_node(4, label="y", layer=2) circuit.add_node(5, label="¬", layer=2) circuit.add_edge(1, 3) circuit.add_edge(1, 4) circuit.add_edge(2, 4) circuit.add_edge(2, 5) # Layer 3 circuit.add_node(6, label="z", layer=3) circuit.add_edge(5, 6) # Convert the circuit to an equivalent formula. formula = circuit_to_formula(circuit) print(formula_to_string(formula)) labels = nx.get_node_attributes(circuit, "label") options = { "node_size": 600, "alpha": 0.5, "node_color": "blue", "labels": labels, "font_size": 22, } plt.figure(figsize=(8, 8)) pos = nx.multipartite_layout(circuit, subset_key="layer") nx.draw_networkx(circuit, pos, **options) plt.title(formula_to_string(formula)) plt.axis("equal") plt.show()