""" =========== Knuth Miles =========== `miles_graph()` returns an undirected graph over 128 US cities. The cities each have location and population data. The edges are labeled with the distance between the two cities. This example is described in Section 1.1 of Donald E. Knuth, "The Stanford GraphBase: A Platform for Combinatorial Computing", ACM Press, New York, 1993. http://www-cs-faculty.stanford.edu/~knuth/sgb.html The data file can be found at: - https://github.com/networkx/networkx/blob/main/examples/drawing/knuth_miles.txt.gz """ import gzip import re # Ignore any warnings related to downloading shpfiles with cartopy import warnings warnings.simplefilter("ignore") import numpy as np import matplotlib.pyplot as plt import networkx as nx def miles_graph(): """Return the cites example graph in miles_dat.txt from the Stanford GraphBase. """ # open file miles_dat.txt.gz (or miles_dat.txt) fh = gzip.open("knuth_miles.txt.gz", "r") G = nx.Graph() G.position = {} G.population = {} cities = [] for line in fh.readlines(): line = line.decode() if line.startswith("*"): # skip comments continue numfind = re.compile(r"^\d+") if numfind.match(line): # this line is distances dist = line.split() for d in dist: G.add_edge(city, cities[i], weight=int(d)) i = i + 1 else: # this line is a city, position, population i = 1 (city, coordpop) = line.split("[") cities.insert(0, city) (coord, pop) = coordpop.split("]") (y, x) = coord.split(",") G.add_node(city) # assign position - Convert string to lat/long G.position[city] = (-float(x) / 100, float(y) / 100) G.population[city] = float(pop) / 1000.0 return G G = miles_graph() print("Loaded miles_dat.txt containing 128 cities.") print(G) # make new graph of cites, edge if less then 300 miles between them H = nx.Graph() for v in G: H.add_node(v) for (u, v, d) in G.edges(data=True): if d["weight"] < 300: H.add_edge(u, v) # draw with matplotlib/pylab fig = plt.figure(figsize=(8, 6)) # nodes colored by degree sized by population node_color = [float(H.degree(v)) for v in H] # Use cartopy to provide a backdrop for the visualization try: import cartopy.crs as ccrs import cartopy.io.shapereader as shpreader ax = fig.add_axes([0, 0, 1, 1], projection=ccrs.LambertConformal(), frameon=False) ax.set_extent([-125, -66.5, 20, 50], ccrs.Geodetic()) # Add map of countries & US states as a backdrop for shapename in ("admin_1_states_provinces_lakes_shp", "admin_0_countries"): shp = shpreader.natural_earth( resolution="110m", category="cultural", name=shapename ) ax.add_geometries( shpreader.Reader(shp).geometries(), ccrs.PlateCarree(), facecolor="none", edgecolor="k", ) # NOTE: When using cartopy, use matplotlib directly rather than nx.draw # to take advantage of the cartopy transforms ax.scatter( *np.array([v for v in G.position.values()]).T, s=[G.population[v] for v in H], c=node_color, transform=ccrs.PlateCarree(), zorder=100 # Ensure nodes lie on top of edges/state lines ) # Plot edges between the cities for edge in H.edges(): edge_coords = np.array([G.position[v] for v in edge]) ax.plot( edge_coords[:, 0], edge_coords[:, 1], transform=ccrs.PlateCarree(), linewidth=0.75, color="k", ) except ImportError: # If cartopy is unavailable, the backdrop for the plot will be blank; # though you should still be able to discern the general shape of the US # from graph nodes and edges! nx.draw( H, G.position, node_size=[G.population[v] for v in H], node_color=node_color, with_labels=False, ) plt.show()