"""Unit tests for the :mod:`networkx.algorithms.approximation.clique` module.""" import networkx as nx from networkx.algorithms.approximation import max_clique from networkx.algorithms.approximation import clique_removal from networkx.algorithms.approximation import large_clique_size from networkx.algorithms.approximation import maximum_independent_set def is_independent_set(G, nodes): """Returns True if and only if `nodes` is a clique in `G`. `G` is a NetworkX graph. `nodes` is an iterable of nodes in `G`. """ return G.subgraph(nodes).number_of_edges() == 0 def is_clique(G, nodes): """Returns True if and only if `nodes` is an independent set in `G`. `G` is an undirected simple graph. `nodes` is an iterable of nodes in `G`. """ H = G.subgraph(nodes) n = len(H) return H.number_of_edges() == n * (n - 1) // 2 class TestCliqueRemoval: """Unit tests for the :func:`~networkx.algorithms.approximation.clique_removal` function. """ def test_trivial_graph(self): G = nx.trivial_graph() independent_set, cliques = clique_removal(G) assert is_independent_set(G, independent_set) assert all(is_clique(G, clique) for clique in cliques) # In fact, we should only have 1-cliques, that is, singleton nodes. assert all(len(clique) == 1 for clique in cliques) def test_complete_graph(self): G = nx.complete_graph(10) independent_set, cliques = clique_removal(G) assert is_independent_set(G, independent_set) assert all(is_clique(G, clique) for clique in cliques) def test_barbell_graph(self): G = nx.barbell_graph(10, 5) independent_set, cliques = clique_removal(G) assert is_independent_set(G, independent_set) assert all(is_clique(G, clique) for clique in cliques) class TestMaxClique: """Unit tests for the :func:`networkx.algorithms.approximation.max_clique` function. """ def test_null_graph(self): G = nx.null_graph() assert len(max_clique(G)) == 0 def test_complete_graph(self): graph = nx.complete_graph(30) # this should return the entire graph mc = max_clique(graph) assert 30 == len(mc) def test_maximal_by_cardinality(self): """Tests that the maximal clique is computed according to maximum cardinality of the sets. For more information, see pull request #1531. """ G = nx.complete_graph(5) G.add_edge(4, 5) clique = max_clique(G) assert len(clique) > 1 G = nx.lollipop_graph(30, 2) clique = max_clique(G) assert len(clique) > 2 def test_large_clique_size(): G = nx.complete_graph(9) nx.add_cycle(G, [9, 10, 11]) G.add_edge(8, 9) G.add_edge(1, 12) G.add_node(13) assert large_clique_size(G) == 9 G.remove_node(5) assert large_clique_size(G) == 8 G.remove_edge(2, 3) assert large_clique_size(G) == 7 def test_independent_set(): # smoke test G = nx.Graph() assert len(maximum_independent_set(G)) == 0