import pytest import networkx as nx from networkx.algorithms import approximation as approx def test_global_node_connectivity(): # Figure 1 chapter on Connectivity G = nx.Graph() G.add_edges_from( [ (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 6), (3, 4), (3, 6), (4, 6), (4, 7), (5, 7), (6, 8), (6, 9), (7, 8), (7, 10), (8, 11), (9, 10), (9, 11), (10, 11), ] ) assert 2 == approx.local_node_connectivity(G, 1, 11) assert 2 == approx.node_connectivity(G) assert 2 == approx.node_connectivity(G, 1, 11) def test_white_harary1(): # Figure 1b white and harary (2001) # A graph with high adhesion (edge connectivity) and low cohesion # (node connectivity) G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4)) G.remove_node(7) for i in range(4, 7): G.add_edge(0, i) G = nx.disjoint_union(G, nx.complete_graph(4)) G.remove_node(G.order() - 1) for i in range(7, 10): G.add_edge(0, i) assert 1 == approx.node_connectivity(G) def test_complete_graphs(): for n in range(5, 25, 5): G = nx.complete_graph(n) assert n - 1 == approx.node_connectivity(G) assert n - 1 == approx.node_connectivity(G, 0, 3) def test_empty_graphs(): for k in range(5, 25, 5): G = nx.empty_graph(k) assert 0 == approx.node_connectivity(G) assert 0 == approx.node_connectivity(G, 0, 3) def test_petersen(): G = nx.petersen_graph() assert 3 == approx.node_connectivity(G) assert 3 == approx.node_connectivity(G, 0, 5) # Approximation fails with tutte graph # def test_tutte(): # G = nx.tutte_graph() # assert_equal(3, approx.node_connectivity(G)) def test_dodecahedral(): G = nx.dodecahedral_graph() assert 3 == approx.node_connectivity(G) assert 3 == approx.node_connectivity(G, 0, 5) def test_octahedral(): G = nx.octahedral_graph() assert 4 == approx.node_connectivity(G) assert 4 == approx.node_connectivity(G, 0, 5) # Approximation can fail with icosahedral graph depending # on iteration order. # def test_icosahedral(): # G=nx.icosahedral_graph() # assert_equal(5, approx.node_connectivity(G)) # assert_equal(5, approx.node_connectivity(G, 0, 5)) def test_only_source(): G = nx.complete_graph(5) pytest.raises(nx.NetworkXError, approx.node_connectivity, G, s=0) def test_only_target(): G = nx.complete_graph(5) pytest.raises(nx.NetworkXError, approx.node_connectivity, G, t=0) def test_missing_source(): G = nx.path_graph(4) pytest.raises(nx.NetworkXError, approx.node_connectivity, G, 10, 1) def test_missing_target(): G = nx.path_graph(4) pytest.raises(nx.NetworkXError, approx.node_connectivity, G, 1, 10) def test_source_equals_target(): G = nx.complete_graph(5) pytest.raises(nx.NetworkXError, approx.local_node_connectivity, G, 0, 0) def test_directed_node_connectivity(): G = nx.cycle_graph(10, create_using=nx.DiGraph()) # only one direction D = nx.cycle_graph(10).to_directed() # 2 reciprocal edges assert 1 == approx.node_connectivity(G) assert 1 == approx.node_connectivity(G, 1, 4) assert 2 == approx.node_connectivity(D) assert 2 == approx.node_connectivity(D, 1, 4) class TestAllPairsNodeConnectivityApprox: @classmethod def setup_class(cls): cls.path = nx.path_graph(7) cls.directed_path = nx.path_graph(7, create_using=nx.DiGraph()) cls.cycle = nx.cycle_graph(7) cls.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph()) cls.gnp = nx.gnp_random_graph(30, 0.1) cls.directed_gnp = nx.gnp_random_graph(30, 0.1, directed=True) cls.K20 = nx.complete_graph(20) cls.K10 = nx.complete_graph(10) cls.K5 = nx.complete_graph(5) cls.G_list = [ cls.path, cls.directed_path, cls.cycle, cls.directed_cycle, cls.gnp, cls.directed_gnp, cls.K10, cls.K5, cls.K20, ] def test_cycles(self): K_undir = approx.all_pairs_node_connectivity(self.cycle) for source in K_undir: for target, k in K_undir[source].items(): assert k == 2 K_dir = approx.all_pairs_node_connectivity(self.directed_cycle) for source in K_dir: for target, k in K_dir[source].items(): assert k == 1 def test_complete(self): for G in [self.K10, self.K5, self.K20]: K = approx.all_pairs_node_connectivity(G) for source in K: for target, k in K[source].items(): assert k == len(G) - 1 def test_paths(self): K_undir = approx.all_pairs_node_connectivity(self.path) for source in K_undir: for target, k in K_undir[source].items(): assert k == 1 K_dir = approx.all_pairs_node_connectivity(self.directed_path) for source in K_dir: for target, k in K_dir[source].items(): if source < target: assert k == 1 else: assert k == 0 def test_cutoff(self): for G in [self.K10, self.K5, self.K20]: for mp in [2, 3, 4]: paths = approx.all_pairs_node_connectivity(G, cutoff=mp) for source in paths: for target, K in paths[source].items(): assert K == mp def test_all_pairs_connectivity_nbunch(self): G = nx.complete_graph(5) nbunch = [0, 2, 3] C = approx.all_pairs_node_connectivity(G, nbunch=nbunch) assert len(C) == len(nbunch)