# Test for approximation to k-components algorithm import pytest import networkx as nx from networkx.algorithms.approximation import k_components from networkx.algorithms.approximation.kcomponents import _AntiGraph, _same def build_k_number_dict(k_components): k_num = {} for k, comps in sorted(k_components.items()): for comp in comps: for node in comp: k_num[node] = k return k_num ## # Some nice synthetic graphs ## def graph_example_1(): G = nx.convert_node_labels_to_integers( nx.grid_graph([5, 5]), label_attribute="labels" ) rlabels = nx.get_node_attributes(G, "labels") labels = {v: k for k, v in rlabels.items()} for nodes in [ (labels[(0, 0)], labels[(1, 0)]), (labels[(0, 4)], labels[(1, 4)]), (labels[(3, 0)], labels[(4, 0)]), (labels[(3, 4)], labels[(4, 4)]), ]: new_node = G.order() + 1 # Petersen graph is triconnected P = nx.petersen_graph() G = nx.disjoint_union(G, P) # Add two edges between the grid and P G.add_edge(new_node + 1, nodes[0]) G.add_edge(new_node, nodes[1]) # K5 is 4-connected K = nx.complete_graph(5) G = nx.disjoint_union(G, K) # Add three edges between P and K5 G.add_edge(new_node + 2, new_node + 11) G.add_edge(new_node + 3, new_node + 12) G.add_edge(new_node + 4, new_node + 13) # Add another K5 sharing a node G = nx.disjoint_union(G, K) nbrs = G[new_node + 10] G.remove_node(new_node + 10) for nbr in nbrs: G.add_edge(new_node + 17, nbr) G.add_edge(new_node + 16, new_node + 5) return G def torrents_and_ferraro_graph(): G = nx.convert_node_labels_to_integers( nx.grid_graph([5, 5]), label_attribute="labels" ) rlabels = nx.get_node_attributes(G, "labels") labels = {v: k for k, v in rlabels.items()} for nodes in [(labels[(0, 4)], labels[(1, 4)]), (labels[(3, 4)], labels[(4, 4)])]: new_node = G.order() + 1 # Petersen graph is triconnected P = nx.petersen_graph() G = nx.disjoint_union(G, P) # Add two edges between the grid and P G.add_edge(new_node + 1, nodes[0]) G.add_edge(new_node, nodes[1]) # K5 is 4-connected K = nx.complete_graph(5) G = nx.disjoint_union(G, K) # Add three edges between P and K5 G.add_edge(new_node + 2, new_node + 11) G.add_edge(new_node + 3, new_node + 12) G.add_edge(new_node + 4, new_node + 13) # Add another K5 sharing a node G = nx.disjoint_union(G, K) nbrs = G[new_node + 10] G.remove_node(new_node + 10) for nbr in nbrs: G.add_edge(new_node + 17, nbr) # Commenting this makes the graph not biconnected !! # This stupid mistake make one reviewer very angry :P G.add_edge(new_node + 16, new_node + 8) for nodes in [(labels[(0, 0)], labels[(1, 0)]), (labels[(3, 0)], labels[(4, 0)])]: new_node = G.order() + 1 # Petersen graph is triconnected P = nx.petersen_graph() G = nx.disjoint_union(G, P) # Add two edges between the grid and P G.add_edge(new_node + 1, nodes[0]) G.add_edge(new_node, nodes[1]) # K5 is 4-connected K = nx.complete_graph(5) G = nx.disjoint_union(G, K) # Add three edges between P and K5 G.add_edge(new_node + 2, new_node + 11) G.add_edge(new_node + 3, new_node + 12) G.add_edge(new_node + 4, new_node + 13) # Add another K5 sharing two nodes G = nx.disjoint_union(G, K) nbrs = G[new_node + 10] G.remove_node(new_node + 10) for nbr in nbrs: G.add_edge(new_node + 17, nbr) nbrs2 = G[new_node + 9] G.remove_node(new_node + 9) for nbr in nbrs2: G.add_edge(new_node + 18, nbr) return G # Helper function def _check_connectivity(G): result = k_components(G) for k, components in result.items(): if k < 3: continue for component in components: C = G.subgraph(component) K = nx.node_connectivity(C) assert K >= k def test_torrents_and_ferraro_graph(): G = torrents_and_ferraro_graph() _check_connectivity(G) def test_example_1(): G = graph_example_1() _check_connectivity(G) def test_karate_0(): G = nx.karate_club_graph() _check_connectivity(G) def test_karate_1(): karate_k_num = { 0: 4, 1: 4, 2: 4, 3: 4, 4: 3, 5: 3, 6: 3, 7: 4, 8: 4, 9: 2, 10: 3, 11: 1, 12: 2, 13: 4, 14: 2, 15: 2, 16: 2, 17: 2, 18: 2, 19: 3, 20: 2, 21: 2, 22: 2, 23: 3, 24: 3, 25: 3, 26: 2, 27: 3, 28: 3, 29: 3, 30: 4, 31: 3, 32: 4, 33: 4, } approx_karate_k_num = karate_k_num.copy() approx_karate_k_num[24] = 2 approx_karate_k_num[25] = 2 G = nx.karate_club_graph() k_comps = k_components(G) k_num = build_k_number_dict(k_comps) assert k_num in (karate_k_num, approx_karate_k_num) def test_example_1_detail_3_and_4(): G = graph_example_1() result = k_components(G) # In this example graph there are 8 3-components, 4 with 15 nodes # and 4 with 5 nodes. assert len(result[3]) == 8 assert len([c for c in result[3] if len(c) == 15]) == 4 assert len([c for c in result[3] if len(c) == 5]) == 4 # There are also 8 4-components all with 5 nodes. assert len(result[4]) == 8 assert all(len(c) == 5 for c in result[4]) # Finally check that the k-components detected have actually node # connectivity >= k. for k, components in result.items(): if k < 3: continue for component in components: K = nx.node_connectivity(G.subgraph(component)) assert K >= k def test_directed(): with pytest.raises(nx.NetworkXNotImplemented): G = nx.gnp_random_graph(10, 0.4, directed=True) kc = k_components(G) def test_same(): equal = {"A": 2, "B": 2, "C": 2} slightly_different = {"A": 2, "B": 1, "C": 2} different = {"A": 2, "B": 8, "C": 18} assert _same(equal) assert not _same(slightly_different) assert _same(slightly_different, tol=1) assert not _same(different) assert not _same(different, tol=4) class TestAntiGraph: @classmethod def setup_class(cls): cls.Gnp = nx.gnp_random_graph(20, 0.8) cls.Anp = _AntiGraph(nx.complement(cls.Gnp)) cls.Gd = nx.davis_southern_women_graph() cls.Ad = _AntiGraph(nx.complement(cls.Gd)) cls.Gk = nx.karate_club_graph() cls.Ak = _AntiGraph(nx.complement(cls.Gk)) cls.GA = [(cls.Gnp, cls.Anp), (cls.Gd, cls.Ad), (cls.Gk, cls.Ak)] def test_size(self): for G, A in self.GA: n = G.order() s = len(list(G.edges())) + len(list(A.edges())) assert s == (n * (n - 1)) / 2 def test_degree(self): for G, A in self.GA: assert sorted(G.degree()) == sorted(A.degree()) def test_core_number(self): for G, A in self.GA: assert nx.core_number(G) == nx.core_number(A) def test_connected_components(self): for G, A in self.GA: gc = [set(c) for c in nx.connected_components(G)] ac = [set(c) for c in nx.connected_components(A)] for comp in ac: assert comp in gc def test_adj(self): for G, A in self.GA: for n, nbrs in G.adj.items(): a_adj = sorted((n, sorted(ad)) for n, ad in A.adj.items()) g_adj = sorted((n, sorted(ad)) for n, ad in G.adj.items()) assert a_adj == g_adj def test_adjacency(self): for G, A in self.GA: a_adj = list(A.adjacency()) for n, nbrs in G.adjacency(): assert (n, set(nbrs)) in a_adj def test_neighbors(self): for G, A in self.GA: node = list(G.nodes())[0] assert set(G.neighbors(node)) == set(A.neighbors(node)) def test_node_not_in_graph(self): for G, A in self.GA: node = "non_existent_node" pytest.raises(nx.NetworkXError, A.neighbors, node) pytest.raises(nx.NetworkXError, G.neighbors, node) def test_degree_thingraph(self): for G, A in self.GA: node = list(G.nodes())[0] nodes = list(G.nodes())[1:4] assert G.degree(node) == A.degree(node) assert sum(d for n, d in G.degree()) == sum(d for n, d in A.degree()) # AntiGraph is a ThinGraph, so all the weights are 1 assert sum(d for n, d in A.degree()) == sum( d for n, d in A.degree(weight="weight") ) assert sum(d for n, d in G.degree(nodes)) == sum( d for n, d in A.degree(nodes) )