import networkx as nx from networkx.algorithms.approximation import treewidth_min_degree from networkx.algorithms.approximation import treewidth_min_fill_in from networkx.algorithms.approximation.treewidth import min_fill_in_heuristic from networkx.algorithms.approximation.treewidth import MinDegreeHeuristic import itertools def is_tree_decomp(graph, decomp): """Check if the given tree decomposition is valid.""" for x in graph.nodes(): appear_once = False for bag in decomp.nodes(): if x in bag: appear_once = True break assert appear_once # Check if each connected pair of nodes are at least once together in a bag for (x, y) in graph.edges(): appear_together = False for bag in decomp.nodes(): if x in bag and y in bag: appear_together = True break assert appear_together # Check if the nodes associated with vertex v form a connected subset of T for v in graph.nodes(): subset = [] for bag in decomp.nodes(): if v in bag: subset.append(bag) sub_graph = decomp.subgraph(subset) assert nx.is_connected(sub_graph) class TestTreewidthMinDegree: """Unit tests for the min_degree function""" @classmethod def setup_class(cls): """Setup for different kinds of trees""" cls.complete = nx.Graph() cls.complete.add_edge(1, 2) cls.complete.add_edge(2, 3) cls.complete.add_edge(1, 3) cls.small_tree = nx.Graph() cls.small_tree.add_edge(1, 3) cls.small_tree.add_edge(4, 3) cls.small_tree.add_edge(2, 3) cls.small_tree.add_edge(3, 5) cls.small_tree.add_edge(5, 6) cls.small_tree.add_edge(5, 7) cls.small_tree.add_edge(6, 7) cls.deterministic_graph = nx.Graph() cls.deterministic_graph.add_edge(0, 1) # deg(0) = 1 cls.deterministic_graph.add_edge(1, 2) # deg(1) = 2 cls.deterministic_graph.add_edge(2, 3) cls.deterministic_graph.add_edge(2, 4) # deg(2) = 3 cls.deterministic_graph.add_edge(3, 4) cls.deterministic_graph.add_edge(3, 5) cls.deterministic_graph.add_edge(3, 6) # deg(3) = 4 cls.deterministic_graph.add_edge(4, 5) cls.deterministic_graph.add_edge(4, 6) cls.deterministic_graph.add_edge(4, 7) # deg(4) = 5 cls.deterministic_graph.add_edge(5, 6) cls.deterministic_graph.add_edge(5, 7) cls.deterministic_graph.add_edge(5, 8) cls.deterministic_graph.add_edge(5, 9) # deg(5) = 6 cls.deterministic_graph.add_edge(6, 7) cls.deterministic_graph.add_edge(6, 8) cls.deterministic_graph.add_edge(6, 9) # deg(6) = 6 cls.deterministic_graph.add_edge(7, 8) cls.deterministic_graph.add_edge(7, 9) # deg(7) = 5 cls.deterministic_graph.add_edge(8, 9) # deg(8) = 4 def test_petersen_graph(self): """Test Petersen graph tree decomposition result""" G = nx.petersen_graph() _, decomp = treewidth_min_degree(G) is_tree_decomp(G, decomp) def test_small_tree_treewidth(self): """Test small tree Test if the computed treewidth of the known self.small_tree is 2. As we know which value we can expect from our heuristic, values other than two are regressions """ G = self.small_tree # the order of removal should be [1,2,4]3[5,6,7] # (with [] denoting any order of the containing nodes) # resulting in treewidth 2 for the heuristic treewidth, _ = treewidth_min_fill_in(G) assert treewidth == 2 def test_heuristic_abort(self): """Test heuristic abort condition for fully connected graph""" graph = {} for u in self.complete: graph[u] = set() for v in self.complete[u]: if u != v: # ignore self-loop graph[u].add(v) deg_heuristic = MinDegreeHeuristic(graph) node = deg_heuristic.best_node(graph) if node is None: pass else: assert False def test_empty_graph(self): """Test empty graph""" G = nx.Graph() _, _ = treewidth_min_degree(G) def test_two_component_graph(self): """Test empty graph""" G = nx.Graph() G.add_node(1) G.add_node(2) treewidth, _ = treewidth_min_degree(G) assert treewidth == 0 def test_heuristic_first_steps(self): """Test first steps of min_degree heuristic""" graph = { n: set(self.deterministic_graph[n]) - {n} for n in self.deterministic_graph } deg_heuristic = MinDegreeHeuristic(graph) elim_node = deg_heuristic.best_node(graph) print(f"Graph {graph}:") steps = [] while elim_node is not None: print(f"Removing {elim_node}:") steps.append(elim_node) nbrs = graph[elim_node] for u, v in itertools.permutations(nbrs, 2): if v not in graph[u]: graph[u].add(v) for u in graph: if elim_node in graph[u]: graph[u].remove(elim_node) del graph[elim_node] print(f"Graph {graph}:") elim_node = deg_heuristic.best_node(graph) # check only the first 5 elements for equality assert steps[:5] == [0, 1, 2, 3, 4] class TestTreewidthMinFillIn: """Unit tests for the treewidth_min_fill_in function.""" @classmethod def setup_class(cls): """Setup for different kinds of trees""" cls.complete = nx.Graph() cls.complete.add_edge(1, 2) cls.complete.add_edge(2, 3) cls.complete.add_edge(1, 3) cls.small_tree = nx.Graph() cls.small_tree.add_edge(1, 2) cls.small_tree.add_edge(2, 3) cls.small_tree.add_edge(3, 4) cls.small_tree.add_edge(1, 4) cls.small_tree.add_edge(2, 4) cls.small_tree.add_edge(4, 5) cls.small_tree.add_edge(5, 6) cls.small_tree.add_edge(5, 7) cls.small_tree.add_edge(6, 7) cls.deterministic_graph = nx.Graph() cls.deterministic_graph.add_edge(1, 2) cls.deterministic_graph.add_edge(1, 3) cls.deterministic_graph.add_edge(3, 4) cls.deterministic_graph.add_edge(2, 4) cls.deterministic_graph.add_edge(3, 5) cls.deterministic_graph.add_edge(4, 5) cls.deterministic_graph.add_edge(3, 6) cls.deterministic_graph.add_edge(5, 6) def test_petersen_graph(self): """Test Petersen graph tree decomposition result""" G = nx.petersen_graph() _, decomp = treewidth_min_fill_in(G) is_tree_decomp(G, decomp) def test_small_tree_treewidth(self): """Test if the computed treewidth of the known self.small_tree is 2""" G = self.small_tree # the order of removal should be [1,2,4]3[5,6,7] # (with [] denoting any order of the containing nodes) # resulting in treewidth 2 for the heuristic treewidth, _ = treewidth_min_fill_in(G) assert treewidth == 2 def test_heuristic_abort(self): """Test if min_fill_in returns None for fully connected graph""" graph = {} for u in self.complete: graph[u] = set() for v in self.complete[u]: if u != v: # ignore self-loop graph[u].add(v) next_node = min_fill_in_heuristic(graph) if next_node is None: pass else: assert False def test_empty_graph(self): """Test empty graph""" G = nx.Graph() _, _ = treewidth_min_fill_in(G) def test_two_component_graph(self): """Test empty graph""" G = nx.Graph() G.add_node(1) G.add_node(2) treewidth, _ = treewidth_min_fill_in(G) assert treewidth == 0 def test_heuristic_first_steps(self): """Test first steps of min_fill_in heuristic""" graph = { n: set(self.deterministic_graph[n]) - {n} for n in self.deterministic_graph } print(f"Graph {graph}:") elim_node = min_fill_in_heuristic(graph) steps = [] while elim_node is not None: print(f"Removing {elim_node}:") steps.append(elim_node) nbrs = graph[elim_node] for u, v in itertools.permutations(nbrs, 2): if v not in graph[u]: graph[u].add(v) for u in graph: if elim_node in graph[u]: graph[u].remove(elim_node) del graph[elim_node] print(f"Graph {graph}:") elim_node = min_fill_in_heuristic(graph) # check only the first 2 elements for equality assert steps[:2] == [6, 5]