import pytest import networkx as nx from networkx.algorithms import bipartite class TestBipartiteBasic: def test_is_bipartite(self): assert bipartite.is_bipartite(nx.path_graph(4)) assert bipartite.is_bipartite(nx.DiGraph([(1, 0)])) assert not bipartite.is_bipartite(nx.complete_graph(3)) def test_bipartite_color(self): G = nx.path_graph(4) c = bipartite.color(G) assert c == {0: 1, 1: 0, 2: 1, 3: 0} def test_not_bipartite_color(self): with pytest.raises(nx.NetworkXError): c = bipartite.color(nx.complete_graph(4)) def test_bipartite_directed(self): G = bipartite.random_graph(10, 10, 0.1, directed=True) assert bipartite.is_bipartite(G) def test_bipartite_sets(self): G = nx.path_graph(4) X, Y = bipartite.sets(G) assert X == {0, 2} assert Y == {1, 3} def test_bipartite_sets_directed(self): G = nx.path_graph(4) D = G.to_directed() X, Y = bipartite.sets(D) assert X == {0, 2} assert Y == {1, 3} def test_bipartite_sets_given_top_nodes(self): G = nx.path_graph(4) top_nodes = [0, 2] X, Y = bipartite.sets(G, top_nodes) assert X == {0, 2} assert Y == {1, 3} def test_bipartite_sets_disconnected(self): with pytest.raises(nx.AmbiguousSolution): G = nx.path_graph(4) G.add_edges_from([(5, 6), (6, 7)]) X, Y = bipartite.sets(G) def test_is_bipartite_node_set(self): G = nx.path_graph(4) assert bipartite.is_bipartite_node_set(G, [0, 2]) assert bipartite.is_bipartite_node_set(G, [1, 3]) assert not bipartite.is_bipartite_node_set(G, [1, 2]) G.add_edge(10, 20) assert bipartite.is_bipartite_node_set(G, [0, 2, 10]) assert bipartite.is_bipartite_node_set(G, [0, 2, 20]) assert bipartite.is_bipartite_node_set(G, [1, 3, 10]) assert bipartite.is_bipartite_node_set(G, [1, 3, 20]) def test_bipartite_density(self): G = nx.path_graph(5) X, Y = bipartite.sets(G) density = float(len(list(G.edges()))) / (len(X) * len(Y)) assert bipartite.density(G, X) == density D = nx.DiGraph(G.edges()) assert bipartite.density(D, X) == density / 2.0 assert bipartite.density(nx.Graph(), {}) == 0.0 def test_bipartite_degrees(self): G = nx.path_graph(5) X = {1, 3} Y = {0, 2, 4} u, d = bipartite.degrees(G, Y) assert dict(u) == {1: 2, 3: 2} assert dict(d) == {0: 1, 2: 2, 4: 1} def test_bipartite_weighted_degrees(self): G = nx.path_graph(5) G.add_edge(0, 1, weight=0.1, other=0.2) X = {1, 3} Y = {0, 2, 4} u, d = bipartite.degrees(G, Y, weight="weight") assert dict(u) == {1: 1.1, 3: 2} assert dict(d) == {0: 0.1, 2: 2, 4: 1} u, d = bipartite.degrees(G, Y, weight="other") assert dict(u) == {1: 1.2, 3: 2} assert dict(d) == {0: 0.2, 2: 2, 4: 1} def test_biadjacency_matrix_weight(self): pytest.importorskip("scipy") G = nx.path_graph(5) G.add_edge(0, 1, weight=2, other=4) X = [1, 3] Y = [0, 2, 4] M = bipartite.biadjacency_matrix(G, X, weight="weight") assert M[0, 0] == 2 M = bipartite.biadjacency_matrix(G, X, weight="other") assert M[0, 0] == 4 def test_biadjacency_matrix(self): pytest.importorskip("scipy") tops = [2, 5, 10] bots = [5, 10, 15] for i in range(len(tops)): G = bipartite.random_graph(tops[i], bots[i], 0.2) top = [n for n, d in G.nodes(data=True) if d["bipartite"] == 0] M = bipartite.biadjacency_matrix(G, top) assert M.shape[0] == tops[i] assert M.shape[1] == bots[i] def test_biadjacency_matrix_order(self): pytest.importorskip("scipy") G = nx.path_graph(5) G.add_edge(0, 1, weight=2) X = [3, 1] Y = [4, 2, 0] M = bipartite.biadjacency_matrix(G, X, Y, weight="weight") assert M[1, 2] == 2