import networkx as nx import pytest from networkx.algorithms.bipartite.cluster import cc_dot, cc_min, cc_max import networkx.algorithms.bipartite as bipartite def test_pairwise_bipartite_cc_functions(): # Test functions for different kinds of bipartite clustering coefficients # between pairs of nodes using 3 example graphs from figure 5 p. 40 # Latapy et al (2008) G1 = nx.Graph([(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 5), (1, 6), (1, 7)]) G2 = nx.Graph([(0, 2), (0, 3), (0, 4), (1, 3), (1, 4), (1, 5)]) G3 = nx.Graph( [(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9)] ) result = { 0: [1 / 3.0, 2 / 3.0, 2 / 5.0], 1: [1 / 2.0, 2 / 3.0, 2 / 3.0], 2: [2 / 8.0, 2 / 5.0, 2 / 5.0], } for i, G in enumerate([G1, G2, G3]): assert bipartite.is_bipartite(G) assert cc_dot(set(G[0]), set(G[1])) == result[i][0] assert cc_min(set(G[0]), set(G[1])) == result[i][1] assert cc_max(set(G[0]), set(G[1])) == result[i][2] def test_star_graph(): G = nx.star_graph(3) # all modes are the same answer = {0: 0, 1: 1, 2: 1, 3: 1} assert bipartite.clustering(G, mode="dot") == answer assert bipartite.clustering(G, mode="min") == answer assert bipartite.clustering(G, mode="max") == answer def test_not_bipartite(): with pytest.raises(nx.NetworkXError): bipartite.clustering(nx.complete_graph(4)) def test_bad_mode(): with pytest.raises(nx.NetworkXError): bipartite.clustering(nx.path_graph(4), mode="foo") def test_path_graph(): G = nx.path_graph(4) answer = {0: 0.5, 1: 0.5, 2: 0.5, 3: 0.5} assert bipartite.clustering(G, mode="dot") == answer assert bipartite.clustering(G, mode="max") == answer answer = {0: 1, 1: 1, 2: 1, 3: 1} assert bipartite.clustering(G, mode="min") == answer def test_average_path_graph(): G = nx.path_graph(4) assert bipartite.average_clustering(G, mode="dot") == 0.5 assert bipartite.average_clustering(G, mode="max") == 0.5 assert bipartite.average_clustering(G, mode="min") == 1 def test_ra_clustering_davis(): G = nx.davis_southern_women_graph() cc4 = round(bipartite.robins_alexander_clustering(G), 3) assert cc4 == 0.468 def test_ra_clustering_square(): G = nx.path_graph(4) G.add_edge(0, 3) assert bipartite.robins_alexander_clustering(G) == 1.0 def test_ra_clustering_zero(): G = nx.Graph() assert bipartite.robins_alexander_clustering(G) == 0 G.add_nodes_from(range(4)) assert bipartite.robins_alexander_clustering(G) == 0 G.add_edges_from([(0, 1), (2, 3), (3, 4)]) assert bipartite.robins_alexander_clustering(G) == 0 G.add_edge(1, 2) assert bipartite.robins_alexander_clustering(G) == 0