import pytest np = pytest.importorskip("numpy") sp = pytest.importorskip("scipy") sparse = pytest.importorskip("scipy.sparse") import networkx as nx from networkx.algorithms import bipartite from networkx.utils import edges_equal class TestBiadjacencyMatrix: def test_biadjacency_matrix_weight(self): G = nx.path_graph(5) G.add_edge(0, 1, weight=2, other=4) X = [1, 3] Y = [0, 2, 4] M = bipartite.biadjacency_matrix(G, X, weight="weight") assert M[0, 0] == 2 M = bipartite.biadjacency_matrix(G, X, weight="other") assert M[0, 0] == 4 def test_biadjacency_matrix(self): tops = [2, 5, 10] bots = [5, 10, 15] for i in range(len(tops)): G = bipartite.random_graph(tops[i], bots[i], 0.2) top = [n for n, d in G.nodes(data=True) if d["bipartite"] == 0] M = bipartite.biadjacency_matrix(G, top) assert M.shape[0] == tops[i] assert M.shape[1] == bots[i] def test_biadjacency_matrix_order(self): G = nx.path_graph(5) G.add_edge(0, 1, weight=2) X = [3, 1] Y = [4, 2, 0] M = bipartite.biadjacency_matrix(G, X, Y, weight="weight") assert M[1, 2] == 2 def test_null_graph(self): with pytest.raises(nx.NetworkXError): bipartite.biadjacency_matrix(nx.Graph(), []) def test_empty_graph(self): with pytest.raises(nx.NetworkXError): bipartite.biadjacency_matrix(nx.Graph([(1, 0)]), []) def test_duplicate_row(self): with pytest.raises(nx.NetworkXError): bipartite.biadjacency_matrix(nx.Graph([(1, 0)]), [1, 1]) def test_duplicate_col(self): with pytest.raises(nx.NetworkXError): bipartite.biadjacency_matrix(nx.Graph([(1, 0)]), [0], [1, 1]) def test_format_keyword(self): with pytest.raises(nx.NetworkXError): bipartite.biadjacency_matrix(nx.Graph([(1, 0)]), [0], format="foo") def test_from_biadjacency_roundtrip(self): B1 = nx.path_graph(5) M = bipartite.biadjacency_matrix(B1, [0, 2, 4]) B2 = bipartite.from_biadjacency_matrix(M) assert nx.is_isomorphic(B1, B2) def test_from_biadjacency_weight(self): M = sparse.csc_matrix([[1, 2], [0, 3]]) B = bipartite.from_biadjacency_matrix(M) assert edges_equal(B.edges(), [(0, 2), (0, 3), (1, 3)]) B = bipartite.from_biadjacency_matrix(M, edge_attribute="weight") e = [(0, 2, {"weight": 1}), (0, 3, {"weight": 2}), (1, 3, {"weight": 3})] assert edges_equal(B.edges(data=True), e) def test_from_biadjacency_multigraph(self): M = sparse.csc_matrix([[1, 2], [0, 3]]) B = bipartite.from_biadjacency_matrix(M, create_using=nx.MultiGraph()) assert edges_equal(B.edges(), [(0, 2), (0, 3), (0, 3), (1, 3), (1, 3), (1, 3)])