import networkx as nx from networkx.algorithms import bipartite from networkx.utils import nodes_equal, edges_equal class TestBipartiteProject: def test_path_projected_graph(self): G = nx.path_graph(4) P = bipartite.projected_graph(G, [1, 3]) assert nodes_equal(list(P), [1, 3]) assert edges_equal(list(P.edges()), [(1, 3)]) P = bipartite.projected_graph(G, [0, 2]) assert nodes_equal(list(P), [0, 2]) assert edges_equal(list(P.edges()), [(0, 2)]) def test_path_projected_properties_graph(self): G = nx.path_graph(4) G.add_node(1, name="one") G.add_node(2, name="two") P = bipartite.projected_graph(G, [1, 3]) assert nodes_equal(list(P), [1, 3]) assert edges_equal(list(P.edges()), [(1, 3)]) assert P.nodes[1]["name"] == G.nodes[1]["name"] P = bipartite.projected_graph(G, [0, 2]) assert nodes_equal(list(P), [0, 2]) assert edges_equal(list(P.edges()), [(0, 2)]) assert P.nodes[2]["name"] == G.nodes[2]["name"] def test_path_collaboration_projected_graph(self): G = nx.path_graph(4) P = bipartite.collaboration_weighted_projected_graph(G, [1, 3]) assert nodes_equal(list(P), [1, 3]) assert edges_equal(list(P.edges()), [(1, 3)]) P[1][3]["weight"] = 1 P = bipartite.collaboration_weighted_projected_graph(G, [0, 2]) assert nodes_equal(list(P), [0, 2]) assert edges_equal(list(P.edges()), [(0, 2)]) P[0][2]["weight"] = 1 def test_directed_path_collaboration_projected_graph(self): G = nx.DiGraph() nx.add_path(G, range(4)) P = bipartite.collaboration_weighted_projected_graph(G, [1, 3]) assert nodes_equal(list(P), [1, 3]) assert edges_equal(list(P.edges()), [(1, 3)]) P[1][3]["weight"] = 1 P = bipartite.collaboration_weighted_projected_graph(G, [0, 2]) assert nodes_equal(list(P), [0, 2]) assert edges_equal(list(P.edges()), [(0, 2)]) P[0][2]["weight"] = 1 def test_path_weighted_projected_graph(self): G = nx.path_graph(4) P = bipartite.weighted_projected_graph(G, [1, 3]) assert nodes_equal(list(P), [1, 3]) assert edges_equal(list(P.edges()), [(1, 3)]) P[1][3]["weight"] = 1 P = bipartite.weighted_projected_graph(G, [0, 2]) assert nodes_equal(list(P), [0, 2]) assert edges_equal(list(P.edges()), [(0, 2)]) P[0][2]["weight"] = 1 def test_path_weighted_projected_directed_graph(self): G = nx.DiGraph() nx.add_path(G, range(4)) P = bipartite.weighted_projected_graph(G, [1, 3]) assert nodes_equal(list(P), [1, 3]) assert edges_equal(list(P.edges()), [(1, 3)]) P[1][3]["weight"] = 1 P = bipartite.weighted_projected_graph(G, [0, 2]) assert nodes_equal(list(P), [0, 2]) assert edges_equal(list(P.edges()), [(0, 2)]) P[0][2]["weight"] = 1 def test_star_projected_graph(self): G = nx.star_graph(3) P = bipartite.projected_graph(G, [1, 2, 3]) assert nodes_equal(list(P), [1, 2, 3]) assert edges_equal(list(P.edges()), [(1, 2), (1, 3), (2, 3)]) P = bipartite.weighted_projected_graph(G, [1, 2, 3]) assert nodes_equal(list(P), [1, 2, 3]) assert edges_equal(list(P.edges()), [(1, 2), (1, 3), (2, 3)]) P = bipartite.projected_graph(G, [0]) assert nodes_equal(list(P), [0]) assert edges_equal(list(P.edges()), []) def test_project_multigraph(self): G = nx.Graph() G.add_edge("a", 1) G.add_edge("b", 1) G.add_edge("a", 2) G.add_edge("b", 2) P = bipartite.projected_graph(G, "ab") assert edges_equal(list(P.edges()), [("a", "b")]) P = bipartite.weighted_projected_graph(G, "ab") assert edges_equal(list(P.edges()), [("a", "b")]) P = bipartite.projected_graph(G, "ab", multigraph=True) assert edges_equal(list(P.edges()), [("a", "b"), ("a", "b")]) def test_project_collaboration(self): G = nx.Graph() G.add_edge("a", 1) G.add_edge("b", 1) G.add_edge("b", 2) G.add_edge("c", 2) G.add_edge("c", 3) G.add_edge("c", 4) G.add_edge("b", 4) P = bipartite.collaboration_weighted_projected_graph(G, "abc") assert P["a"]["b"]["weight"] == 1 assert P["b"]["c"]["weight"] == 2 def test_directed_projection(self): G = nx.DiGraph() G.add_edge("A", 1) G.add_edge(1, "B") G.add_edge("A", 2) G.add_edge("B", 2) P = bipartite.projected_graph(G, "AB") assert edges_equal(list(P.edges()), [("A", "B")]) P = bipartite.weighted_projected_graph(G, "AB") assert edges_equal(list(P.edges()), [("A", "B")]) assert P["A"]["B"]["weight"] == 1 P = bipartite.projected_graph(G, "AB", multigraph=True) assert edges_equal(list(P.edges()), [("A", "B")]) G = nx.DiGraph() G.add_edge("A", 1) G.add_edge(1, "B") G.add_edge("A", 2) G.add_edge(2, "B") P = bipartite.projected_graph(G, "AB") assert edges_equal(list(P.edges()), [("A", "B")]) P = bipartite.weighted_projected_graph(G, "AB") assert edges_equal(list(P.edges()), [("A", "B")]) assert P["A"]["B"]["weight"] == 2 P = bipartite.projected_graph(G, "AB", multigraph=True) assert edges_equal(list(P.edges()), [("A", "B"), ("A", "B")]) class TestBipartiteWeightedProjection: @classmethod def setup_class(cls): # Tore Opsahl's example # http://toreopsahl.com/2009/05/01/projecting-two-mode-networks-onto-weighted-one-mode-networks/ cls.G = nx.Graph() cls.G.add_edge("A", 1) cls.G.add_edge("A", 2) cls.G.add_edge("B", 1) cls.G.add_edge("B", 2) cls.G.add_edge("B", 3) cls.G.add_edge("B", 4) cls.G.add_edge("B", 5) cls.G.add_edge("C", 1) cls.G.add_edge("D", 3) cls.G.add_edge("E", 4) cls.G.add_edge("E", 5) cls.G.add_edge("E", 6) cls.G.add_edge("F", 6) # Graph based on figure 6 from Newman (2001) cls.N = nx.Graph() cls.N.add_edge("A", 1) cls.N.add_edge("A", 2) cls.N.add_edge("A", 3) cls.N.add_edge("B", 1) cls.N.add_edge("B", 2) cls.N.add_edge("B", 3) cls.N.add_edge("C", 1) cls.N.add_edge("D", 1) cls.N.add_edge("E", 3) def test_project_weighted_shared(self): edges = [ ("A", "B", 2), ("A", "C", 1), ("B", "C", 1), ("B", "D", 1), ("B", "E", 2), ("E", "F", 1), ] Panswer = nx.Graph() Panswer.add_weighted_edges_from(edges) P = bipartite.weighted_projected_graph(self.G, "ABCDEF") assert edges_equal(list(P.edges()), Panswer.edges()) for u, v in list(P.edges()): assert P[u][v]["weight"] == Panswer[u][v]["weight"] edges = [ ("A", "B", 3), ("A", "E", 1), ("A", "C", 1), ("A", "D", 1), ("B", "E", 1), ("B", "C", 1), ("B", "D", 1), ("C", "D", 1), ] Panswer = nx.Graph() Panswer.add_weighted_edges_from(edges) P = bipartite.weighted_projected_graph(self.N, "ABCDE") assert edges_equal(list(P.edges()), Panswer.edges()) for u, v in list(P.edges()): assert P[u][v]["weight"] == Panswer[u][v]["weight"] def test_project_weighted_newman(self): edges = [ ("A", "B", 1.5), ("A", "C", 0.5), ("B", "C", 0.5), ("B", "D", 1), ("B", "E", 2), ("E", "F", 1), ] Panswer = nx.Graph() Panswer.add_weighted_edges_from(edges) P = bipartite.collaboration_weighted_projected_graph(self.G, "ABCDEF") assert edges_equal(list(P.edges()), Panswer.edges()) for u, v in list(P.edges()): assert P[u][v]["weight"] == Panswer[u][v]["weight"] edges = [ ("A", "B", 11 / 6.0), ("A", "E", 1 / 2.0), ("A", "C", 1 / 3.0), ("A", "D", 1 / 3.0), ("B", "E", 1 / 2.0), ("B", "C", 1 / 3.0), ("B", "D", 1 / 3.0), ("C", "D", 1 / 3.0), ] Panswer = nx.Graph() Panswer.add_weighted_edges_from(edges) P = bipartite.collaboration_weighted_projected_graph(self.N, "ABCDE") assert edges_equal(list(P.edges()), Panswer.edges()) for u, v in list(P.edges()): assert P[u][v]["weight"] == Panswer[u][v]["weight"] def test_project_weighted_ratio(self): edges = [ ("A", "B", 2 / 6.0), ("A", "C", 1 / 6.0), ("B", "C", 1 / 6.0), ("B", "D", 1 / 6.0), ("B", "E", 2 / 6.0), ("E", "F", 1 / 6.0), ] Panswer = nx.Graph() Panswer.add_weighted_edges_from(edges) P = bipartite.weighted_projected_graph(self.G, "ABCDEF", ratio=True) assert edges_equal(list(P.edges()), Panswer.edges()) for u, v in list(P.edges()): assert P[u][v]["weight"] == Panswer[u][v]["weight"] edges = [ ("A", "B", 3 / 3.0), ("A", "E", 1 / 3.0), ("A", "C", 1 / 3.0), ("A", "D", 1 / 3.0), ("B", "E", 1 / 3.0), ("B", "C", 1 / 3.0), ("B", "D", 1 / 3.0), ("C", "D", 1 / 3.0), ] Panswer = nx.Graph() Panswer.add_weighted_edges_from(edges) P = bipartite.weighted_projected_graph(self.N, "ABCDE", ratio=True) assert edges_equal(list(P.edges()), Panswer.edges()) for u, v in list(P.edges()): assert P[u][v]["weight"] == Panswer[u][v]["weight"] def test_project_weighted_overlap(self): edges = [ ("A", "B", 2 / 2.0), ("A", "C", 1 / 1.0), ("B", "C", 1 / 1.0), ("B", "D", 1 / 1.0), ("B", "E", 2 / 3.0), ("E", "F", 1 / 1.0), ] Panswer = nx.Graph() Panswer.add_weighted_edges_from(edges) P = bipartite.overlap_weighted_projected_graph(self.G, "ABCDEF", jaccard=False) assert edges_equal(list(P.edges()), Panswer.edges()) for u, v in list(P.edges()): assert P[u][v]["weight"] == Panswer[u][v]["weight"] edges = [ ("A", "B", 3 / 3.0), ("A", "E", 1 / 1.0), ("A", "C", 1 / 1.0), ("A", "D", 1 / 1.0), ("B", "E", 1 / 1.0), ("B", "C", 1 / 1.0), ("B", "D", 1 / 1.0), ("C", "D", 1 / 1.0), ] Panswer = nx.Graph() Panswer.add_weighted_edges_from(edges) P = bipartite.overlap_weighted_projected_graph(self.N, "ABCDE", jaccard=False) assert edges_equal(list(P.edges()), Panswer.edges()) for u, v in list(P.edges()): assert P[u][v]["weight"] == Panswer[u][v]["weight"] def test_project_weighted_jaccard(self): edges = [ ("A", "B", 2 / 5.0), ("A", "C", 1 / 2.0), ("B", "C", 1 / 5.0), ("B", "D", 1 / 5.0), ("B", "E", 2 / 6.0), ("E", "F", 1 / 3.0), ] Panswer = nx.Graph() Panswer.add_weighted_edges_from(edges) P = bipartite.overlap_weighted_projected_graph(self.G, "ABCDEF") assert edges_equal(list(P.edges()), Panswer.edges()) for u, v in list(P.edges()): assert P[u][v]["weight"] == Panswer[u][v]["weight"] edges = [ ("A", "B", 3 / 3.0), ("A", "E", 1 / 3.0), ("A", "C", 1 / 3.0), ("A", "D", 1 / 3.0), ("B", "E", 1 / 3.0), ("B", "C", 1 / 3.0), ("B", "D", 1 / 3.0), ("C", "D", 1 / 1.0), ] Panswer = nx.Graph() Panswer.add_weighted_edges_from(edges) P = bipartite.overlap_weighted_projected_graph(self.N, "ABCDE") assert edges_equal(list(P.edges()), Panswer.edges()) for u, v in P.edges(): assert P[u][v]["weight"] == Panswer[u][v]["weight"] def test_generic_weighted_projected_graph_simple(self): def shared(G, u, v): return len(set(G[u]) & set(G[v])) B = nx.path_graph(5) G = bipartite.generic_weighted_projected_graph( B, [0, 2, 4], weight_function=shared ) assert nodes_equal(list(G), [0, 2, 4]) assert edges_equal( list(list(G.edges(data=True))), [(0, 2, {"weight": 1}), (2, 4, {"weight": 1})], ) G = bipartite.generic_weighted_projected_graph(B, [0, 2, 4]) assert nodes_equal(list(G), [0, 2, 4]) assert edges_equal( list(list(G.edges(data=True))), [(0, 2, {"weight": 1}), (2, 4, {"weight": 1})], ) B = nx.DiGraph() nx.add_path(B, range(5)) G = bipartite.generic_weighted_projected_graph(B, [0, 2, 4]) assert nodes_equal(list(G), [0, 2, 4]) assert edges_equal( list(G.edges(data=True)), [(0, 2, {"weight": 1}), (2, 4, {"weight": 1})] ) def test_generic_weighted_projected_graph_custom(self): def jaccard(G, u, v): unbrs = set(G[u]) vnbrs = set(G[v]) return float(len(unbrs & vnbrs)) / len(unbrs | vnbrs) def my_weight(G, u, v, weight="weight"): w = 0 for nbr in set(G[u]) & set(G[v]): w += G.edges[u, nbr].get(weight, 1) + G.edges[v, nbr].get(weight, 1) return w B = nx.bipartite.complete_bipartite_graph(2, 2) for i, (u, v) in enumerate(B.edges()): B.edges[u, v]["weight"] = i + 1 G = bipartite.generic_weighted_projected_graph( B, [0, 1], weight_function=jaccard ) assert edges_equal(list(G.edges(data=True)), [(0, 1, {"weight": 1.0})]) G = bipartite.generic_weighted_projected_graph( B, [0, 1], weight_function=my_weight ) assert edges_equal(list(G.edges(data=True)), [(0, 1, {"weight": 10})]) G = bipartite.generic_weighted_projected_graph(B, [0, 1]) assert edges_equal(list(G.edges(data=True)), [(0, 1, {"weight": 2})])