import pytest import networkx import networkx as nx from networkx.algorithms import find_cycle from networkx.algorithms import minimum_cycle_basis from networkx.algorithms.traversal.edgedfs import FORWARD, REVERSE class TestCycles: @classmethod def setup_class(cls): G = networkx.Graph() nx.add_cycle(G, [0, 1, 2, 3]) nx.add_cycle(G, [0, 3, 4, 5]) nx.add_cycle(G, [0, 1, 6, 7, 8]) G.add_edge(8, 9) cls.G = G def is_cyclic_permutation(self, a, b): n = len(a) if len(b) != n: return False l = a + a return any(l[i : i + n] == b for i in range(n)) def test_cycle_basis(self): G = self.G cy = networkx.cycle_basis(G, 0) sort_cy = sorted(sorted(c) for c in cy) assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]] cy = networkx.cycle_basis(G, 1) sort_cy = sorted(sorted(c) for c in cy) assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]] cy = networkx.cycle_basis(G, 9) sort_cy = sorted(sorted(c) for c in cy) assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]] # test disconnected graphs nx.add_cycle(G, "ABC") cy = networkx.cycle_basis(G, 9) sort_cy = sorted(sorted(c) for c in cy[:-1]) + [sorted(cy[-1])] assert sort_cy == [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5], ["A", "B", "C"]] def test_cycle_basis2(self): with pytest.raises(nx.NetworkXNotImplemented): G = nx.DiGraph() cy = networkx.cycle_basis(G, 0) def test_cycle_basis3(self): with pytest.raises(nx.NetworkXNotImplemented): G = nx.MultiGraph() cy = networkx.cycle_basis(G, 0) def test_simple_cycles(self): edges = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)] G = nx.DiGraph(edges) cc = sorted(nx.simple_cycles(G)) ca = [[0], [0, 1, 2], [0, 2], [1, 2], [2]] assert len(cc) == len(ca) for c in cc: assert any(self.is_cyclic_permutation(c, rc) for rc in ca) def test_simple_cycles_graph(self): with pytest.raises(nx.NetworkXNotImplemented): G = nx.Graph() c = sorted(nx.simple_cycles(G)) def test_unsortable(self): # TODO What does this test do? das 6/2013 G = nx.DiGraph() nx.add_cycle(G, ["a", 1]) c = list(nx.simple_cycles(G)) def test_simple_cycles_small(self): G = nx.DiGraph() nx.add_cycle(G, [1, 2, 3]) c = sorted(nx.simple_cycles(G)) assert len(c) == 1 assert self.is_cyclic_permutation(c[0], [1, 2, 3]) nx.add_cycle(G, [10, 20, 30]) cc = sorted(nx.simple_cycles(G)) assert len(cc) == 2 ca = [[1, 2, 3], [10, 20, 30]] for c in cc: assert any(self.is_cyclic_permutation(c, rc) for rc in ca) def test_simple_cycles_empty(self): G = nx.DiGraph() assert list(nx.simple_cycles(G)) == [] def test_complete_directed_graph(self): # see table 2 in Johnson's paper ncircuits = [1, 5, 20, 84, 409, 2365, 16064] for n, c in zip(range(2, 9), ncircuits): G = nx.DiGraph(nx.complete_graph(n)) assert len(list(nx.simple_cycles(G))) == c def worst_case_graph(self, k): # see figure 1 in Johnson's paper # this graph has exactly 3k simple cycles G = nx.DiGraph() for n in range(2, k + 2): G.add_edge(1, n) G.add_edge(n, k + 2) G.add_edge(2 * k + 1, 1) for n in range(k + 2, 2 * k + 2): G.add_edge(n, 2 * k + 2) G.add_edge(n, n + 1) G.add_edge(2 * k + 3, k + 2) for n in range(2 * k + 3, 3 * k + 3): G.add_edge(2 * k + 2, n) G.add_edge(n, 3 * k + 3) G.add_edge(3 * k + 3, 2 * k + 2) return G def test_worst_case_graph(self): # see figure 1 in Johnson's paper for k in range(3, 10): G = self.worst_case_graph(k) l = len(list(nx.simple_cycles(G))) assert l == 3 * k def test_recursive_simple_and_not(self): for k in range(2, 10): G = self.worst_case_graph(k) cc = sorted(nx.simple_cycles(G)) rcc = sorted(nx.recursive_simple_cycles(G)) assert len(cc) == len(rcc) for c in cc: assert any(self.is_cyclic_permutation(c, r) for r in rcc) for rc in rcc: assert any(self.is_cyclic_permutation(rc, c) for c in cc) def test_simple_graph_with_reported_bug(self): G = nx.DiGraph() edges = [ (0, 2), (0, 3), (1, 0), (1, 3), (2, 1), (2, 4), (3, 2), (3, 4), (4, 0), (4, 1), (4, 5), (5, 0), (5, 1), (5, 2), (5, 3), ] G.add_edges_from(edges) cc = sorted(nx.simple_cycles(G)) assert len(cc) == 26 rcc = sorted(nx.recursive_simple_cycles(G)) assert len(cc) == len(rcc) for c in cc: assert any(self.is_cyclic_permutation(c, rc) for rc in rcc) for rc in rcc: assert any(self.is_cyclic_permutation(rc, c) for c in cc) # These tests might fail with hash randomization since they depend on # edge_dfs. For more information, see the comments in: # networkx/algorithms/traversal/tests/test_edgedfs.py class TestFindCycle: @classmethod def setup_class(cls): cls.nodes = [0, 1, 2, 3] cls.edges = [(-1, 0), (0, 1), (1, 0), (1, 0), (2, 1), (3, 1)] def test_graph_nocycle(self): G = nx.Graph(self.edges) pytest.raises(nx.exception.NetworkXNoCycle, find_cycle, G, self.nodes) def test_graph_cycle(self): G = nx.Graph(self.edges) G.add_edge(2, 0) x = list(find_cycle(G, self.nodes)) x_ = [(0, 1), (1, 2), (2, 0)] assert x == x_ def test_graph_orientation_none(self): G = nx.Graph(self.edges) G.add_edge(2, 0) x = list(find_cycle(G, self.nodes, orientation=None)) x_ = [(0, 1), (1, 2), (2, 0)] assert x == x_ def test_graph_orientation_original(self): G = nx.Graph(self.edges) G.add_edge(2, 0) x = list(find_cycle(G, self.nodes, orientation="original")) x_ = [(0, 1, FORWARD), (1, 2, FORWARD), (2, 0, FORWARD)] assert x == x_ def test_digraph(self): G = nx.DiGraph(self.edges) x = list(find_cycle(G, self.nodes)) x_ = [(0, 1), (1, 0)] assert x == x_ def test_digraph_orientation_none(self): G = nx.DiGraph(self.edges) x = list(find_cycle(G, self.nodes, orientation=None)) x_ = [(0, 1), (1, 0)] assert x == x_ def test_digraph_orientation_original(self): G = nx.DiGraph(self.edges) x = list(find_cycle(G, self.nodes, orientation="original")) x_ = [(0, 1, FORWARD), (1, 0, FORWARD)] assert x == x_ def test_multigraph(self): G = nx.MultiGraph(self.edges) x = list(find_cycle(G, self.nodes)) x_ = [(0, 1, 0), (1, 0, 1)] # or (1, 0, 2) # Hash randomization...could be any edge. assert x[0] == x_[0] assert x[1][:2] == x_[1][:2] def test_multidigraph(self): G = nx.MultiDiGraph(self.edges) x = list(find_cycle(G, self.nodes)) x_ = [(0, 1, 0), (1, 0, 0)] # (1, 0, 1) assert x[0] == x_[0] assert x[1][:2] == x_[1][:2] def test_digraph_ignore(self): G = nx.DiGraph(self.edges) x = list(find_cycle(G, self.nodes, orientation="ignore")) x_ = [(0, 1, FORWARD), (1, 0, FORWARD)] assert x == x_ def test_digraph_reverse(self): G = nx.DiGraph(self.edges) x = list(find_cycle(G, self.nodes, orientation="reverse")) x_ = [(1, 0, REVERSE), (0, 1, REVERSE)] assert x == x_ def test_multidigraph_ignore(self): G = nx.MultiDiGraph(self.edges) x = list(find_cycle(G, self.nodes, orientation="ignore")) x_ = [(0, 1, 0, FORWARD), (1, 0, 0, FORWARD)] # or (1, 0, 1, 1) assert x[0] == x_[0] assert x[1][:2] == x_[1][:2] assert x[1][3] == x_[1][3] def test_multidigraph_ignore2(self): # Loop traversed an edge while ignoring its orientation. G = nx.MultiDiGraph([(0, 1), (1, 2), (1, 2)]) x = list(find_cycle(G, [0, 1, 2], orientation="ignore")) x_ = [(1, 2, 0, FORWARD), (1, 2, 1, REVERSE)] assert x == x_ def test_multidigraph_original(self): # Node 2 doesn't need to be searched again from visited from 4. # The goal here is to cover the case when 2 to be researched from 4, # when 4 is visited from the first time (so we must make sure that 4 # is not visited from 2, and hence, we respect the edge orientation). G = nx.MultiDiGraph([(0, 1), (1, 2), (2, 3), (4, 2)]) pytest.raises( nx.exception.NetworkXNoCycle, find_cycle, G, [0, 1, 2, 3, 4], orientation="original", ) def test_dag(self): G = nx.DiGraph([(0, 1), (0, 2), (1, 2)]) pytest.raises( nx.exception.NetworkXNoCycle, find_cycle, G, orientation="original" ) x = list(find_cycle(G, orientation="ignore")) assert x == [(0, 1, FORWARD), (1, 2, FORWARD), (0, 2, REVERSE)] def test_prev_explored(self): # https://github.com/networkx/networkx/issues/2323 G = nx.DiGraph() G.add_edges_from([(1, 0), (2, 0), (1, 2), (2, 1)]) pytest.raises(nx.NetworkXNoCycle, find_cycle, G, source=0) x = list(nx.find_cycle(G, 1)) x_ = [(1, 2), (2, 1)] assert x == x_ x = list(nx.find_cycle(G, 2)) x_ = [(2, 1), (1, 2)] assert x == x_ x = list(nx.find_cycle(G)) x_ = [(1, 2), (2, 1)] assert x == x_ def test_no_cycle(self): # https://github.com/networkx/networkx/issues/2439 G = nx.DiGraph() G.add_edges_from([(1, 2), (2, 0), (3, 1), (3, 2)]) pytest.raises(nx.NetworkXNoCycle, find_cycle, G, source=0) pytest.raises(nx.NetworkXNoCycle, find_cycle, G) def assert_basis_equal(a, b): assert sorted(a) == sorted(b) class TestMinimumCycles: @classmethod def setup_class(cls): T = nx.Graph() nx.add_cycle(T, [1, 2, 3, 4], weight=1) T.add_edge(2, 4, weight=5) cls.diamond_graph = T def test_unweighted_diamond(self): mcb = minimum_cycle_basis(self.diamond_graph) assert_basis_equal([sorted(c) for c in mcb], [[1, 2, 4], [2, 3, 4]]) def test_weighted_diamond(self): mcb = minimum_cycle_basis(self.diamond_graph, weight="weight") assert_basis_equal([sorted(c) for c in mcb], [[1, 2, 4], [1, 2, 3, 4]]) def test_dimensionality(self): # checks |MCB|=|E|-|V|+|NC| ntrial = 10 for _ in range(ntrial): rg = nx.erdos_renyi_graph(10, 0.3) nnodes = rg.number_of_nodes() nedges = rg.number_of_edges() ncomp = nx.number_connected_components(rg) dim_mcb = len(minimum_cycle_basis(rg)) assert dim_mcb == nedges - nnodes + ncomp def test_complete_graph(self): cg = nx.complete_graph(5) mcb = minimum_cycle_basis(cg) assert all([len(cycle) == 3 for cycle in mcb]) def test_tree_graph(self): tg = nx.balanced_tree(3, 3) assert not minimum_cycle_basis(tg)