from itertools import combinations, permutations from collections import deque import pytest import networkx as nx from networkx.utils import edges_equal, pairwise # Recipe from the itertools documentation. def _consume(iterator): "Consume the iterator entirely." # Feed the entire iterator into a zero-length deque. deque(iterator, maxlen=0) class TestDagLongestPath: """Unit tests computing the longest path in a directed acyclic graph.""" def test_empty(self): G = nx.DiGraph() assert nx.dag_longest_path(G) == [] def test_unweighted1(self): edges = [(1, 2), (2, 3), (2, 4), (3, 5), (5, 6), (3, 7)] G = nx.DiGraph(edges) assert nx.dag_longest_path(G) == [1, 2, 3, 5, 6] def test_unweighted2(self): edges = [(1, 2), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)] G = nx.DiGraph(edges) assert nx.dag_longest_path(G) == [1, 2, 3, 4, 5] def test_weighted(self): G = nx.DiGraph() edges = [(1, 2, -5), (2, 3, 1), (3, 4, 1), (4, 5, 0), (3, 5, 4), (1, 6, 2)] G.add_weighted_edges_from(edges) assert nx.dag_longest_path(G) == [2, 3, 5] def test_undirected_not_implemented(self): G = nx.Graph() pytest.raises(nx.NetworkXNotImplemented, nx.dag_longest_path, G) def test_unorderable_nodes(self): """Tests that computing the longest path does not depend on nodes being orderable. For more information, see issue #1989. """ # Create the directed path graph on four nodes in a diamond shape, # with nodes represented as (unorderable) Python objects. nodes = [object() for n in range(4)] G = nx.DiGraph() G.add_edge(nodes[0], nodes[1]) G.add_edge(nodes[0], nodes[2]) G.add_edge(nodes[2], nodes[3]) G.add_edge(nodes[1], nodes[3]) # this will raise NotImplementedError when nodes need to be ordered nx.dag_longest_path(G) class TestDagLongestPathLength: """Unit tests for computing the length of a longest path in a directed acyclic graph. """ def test_unweighted(self): edges = [(1, 2), (2, 3), (2, 4), (3, 5), (5, 6), (5, 7)] G = nx.DiGraph(edges) assert nx.dag_longest_path_length(G) == 4 edges = [(1, 2), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)] G = nx.DiGraph(edges) assert nx.dag_longest_path_length(G) == 4 # test degenerate graphs G = nx.DiGraph() G.add_node(1) assert nx.dag_longest_path_length(G) == 0 def test_undirected_not_implemented(self): G = nx.Graph() pytest.raises(nx.NetworkXNotImplemented, nx.dag_longest_path_length, G) def test_weighted(self): edges = [(1, 2, -5), (2, 3, 1), (3, 4, 1), (4, 5, 0), (3, 5, 4), (1, 6, 2)] G = nx.DiGraph() G.add_weighted_edges_from(edges) assert nx.dag_longest_path_length(G) == 5 class TestDAG: @classmethod def setup_class(cls): pass def test_topological_sort1(self): DG = nx.DiGraph([(1, 2), (1, 3), (2, 3)]) for algorithm in [nx.topological_sort, nx.lexicographical_topological_sort]: assert tuple(algorithm(DG)) == (1, 2, 3) DG.add_edge(3, 2) for algorithm in [nx.topological_sort, nx.lexicographical_topological_sort]: pytest.raises(nx.NetworkXUnfeasible, _consume, algorithm(DG)) DG.remove_edge(2, 3) for algorithm in [nx.topological_sort, nx.lexicographical_topological_sort]: assert tuple(algorithm(DG)) == (1, 3, 2) DG.remove_edge(3, 2) assert tuple(nx.topological_sort(DG)) in {(1, 2, 3), (1, 3, 2)} assert tuple(nx.lexicographical_topological_sort(DG)) == (1, 2, 3) def test_is_directed_acyclic_graph(self): G = nx.generators.complete_graph(2) assert not nx.is_directed_acyclic_graph(G) assert not nx.is_directed_acyclic_graph(G.to_directed()) assert not nx.is_directed_acyclic_graph(nx.Graph([(3, 4), (4, 5)])) assert nx.is_directed_acyclic_graph(nx.DiGraph([(3, 4), (4, 5)])) def test_topological_sort2(self): DG = nx.DiGraph( { 1: [2], 2: [3], 3: [4], 4: [5], 5: [1], 11: [12], 12: [13], 13: [14], 14: [15], } ) pytest.raises(nx.NetworkXUnfeasible, _consume, nx.topological_sort(DG)) assert not nx.is_directed_acyclic_graph(DG) DG.remove_edge(1, 2) _consume(nx.topological_sort(DG)) assert nx.is_directed_acyclic_graph(DG) def test_topological_sort3(self): DG = nx.DiGraph() DG.add_edges_from([(1, i) for i in range(2, 5)]) DG.add_edges_from([(2, i) for i in range(5, 9)]) DG.add_edges_from([(6, i) for i in range(9, 12)]) DG.add_edges_from([(4, i) for i in range(12, 15)]) def validate(order): assert isinstance(order, list) assert set(order) == set(DG) for u, v in combinations(order, 2): assert not nx.has_path(DG, v, u) validate(list(nx.topological_sort(DG))) DG.add_edge(14, 1) pytest.raises(nx.NetworkXUnfeasible, _consume, nx.topological_sort(DG)) def test_topological_sort4(self): G = nx.Graph() G.add_edge(1, 2) # Only directed graphs can be topologically sorted. pytest.raises(nx.NetworkXError, _consume, nx.topological_sort(G)) def test_topological_sort5(self): G = nx.DiGraph() G.add_edge(0, 1) assert list(nx.topological_sort(G)) == [0, 1] def test_topological_sort6(self): for algorithm in [nx.topological_sort, nx.lexicographical_topological_sort]: def runtime_error(): DG = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) first = True for x in algorithm(DG): if first: first = False DG.add_edge(5 - x, 5) def unfeasible_error(): DG = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) first = True for x in algorithm(DG): if first: first = False DG.remove_node(4) def runtime_error2(): DG = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) first = True for x in algorithm(DG): if first: first = False DG.remove_node(2) pytest.raises(RuntimeError, runtime_error) pytest.raises(RuntimeError, runtime_error2) pytest.raises(nx.NetworkXUnfeasible, unfeasible_error) def test_all_topological_sorts_1(self): DG = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 5)]) assert list(nx.all_topological_sorts(DG)) == [[1, 2, 3, 4, 5]] def test_all_topological_sorts_2(self): DG = nx.DiGraph([(1, 3), (2, 1), (2, 4), (4, 3), (4, 5)]) assert sorted(nx.all_topological_sorts(DG)) == [ [2, 1, 4, 3, 5], [2, 1, 4, 5, 3], [2, 4, 1, 3, 5], [2, 4, 1, 5, 3], [2, 4, 5, 1, 3], ] def test_all_topological_sorts_3(self): def unfeasible(): DG = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 2), (4, 5)]) # convert to list to execute generator list(nx.all_topological_sorts(DG)) def not_implemented(): G = nx.Graph([(1, 2), (2, 3)]) # convert to list to execute generator list(nx.all_topological_sorts(G)) def not_implemted_2(): G = nx.MultiGraph([(1, 2), (1, 2), (2, 3)]) list(nx.all_topological_sorts(G)) pytest.raises(nx.NetworkXUnfeasible, unfeasible) pytest.raises(nx.NetworkXNotImplemented, not_implemented) pytest.raises(nx.NetworkXNotImplemented, not_implemted_2) def test_all_topological_sorts_4(self): DG = nx.DiGraph() for i in range(7): DG.add_node(i) assert sorted(map(list, permutations(DG.nodes))) == sorted( nx.all_topological_sorts(DG) ) def test_all_topological_sorts_multigraph_1(self): DG = nx.MultiDiGraph([(1, 2), (1, 2), (2, 3), (3, 4), (3, 5), (3, 5), (3, 5)]) assert sorted(nx.all_topological_sorts(DG)) == sorted( [[1, 2, 3, 4, 5], [1, 2, 3, 5, 4]] ) def test_all_topological_sorts_multigraph_2(self): N = 9 edges = [] for i in range(1, N): edges.extend([(i, i + 1)] * i) DG = nx.MultiDiGraph(edges) assert list(nx.all_topological_sorts(DG)) == [list(range(1, N + 1))] def test_ancestors(self): G = nx.DiGraph() ancestors = nx.algorithms.dag.ancestors G.add_edges_from([(1, 2), (1, 3), (4, 2), (4, 3), (4, 5), (2, 6), (5, 6)]) assert ancestors(G, 6) == {1, 2, 4, 5} assert ancestors(G, 3) == {1, 4} assert ancestors(G, 1) == set() pytest.raises(nx.NetworkXError, ancestors, G, 8) def test_descendants(self): G = nx.DiGraph() descendants = nx.algorithms.dag.descendants G.add_edges_from([(1, 2), (1, 3), (4, 2), (4, 3), (4, 5), (2, 6), (5, 6)]) assert descendants(G, 1) == {2, 3, 6} assert descendants(G, 4) == {2, 3, 5, 6} assert descendants(G, 3) == set() pytest.raises(nx.NetworkXError, descendants, G, 8) def test_transitive_closure(self): G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] assert edges_equal(nx.transitive_closure(G).edges(), solution) G = nx.DiGraph([(1, 2), (2, 3), (2, 4)]) solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)] assert edges_equal(nx.transitive_closure(G).edges(), solution) G = nx.DiGraph([(1, 2), (2, 3), (3, 1)]) solution = [(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)] soln = sorted(solution + [(n, n) for n in G]) assert edges_equal(sorted(nx.transitive_closure(G).edges()), soln) G = nx.Graph([(1, 2), (2, 3), (3, 4)]) solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] assert edges_equal(sorted(nx.transitive_closure(G).edges()), solution) G = nx.MultiGraph([(1, 2), (2, 3), (3, 4)]) solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] assert edges_equal(sorted(nx.transitive_closure(G).edges()), solution) G = nx.MultiDiGraph([(1, 2), (2, 3), (3, 4)]) solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] assert edges_equal(sorted(nx.transitive_closure(G).edges()), solution) # test if edge data is copied G = nx.DiGraph([(1, 2, {"a": 3}), (2, 3, {"b": 0}), (3, 4)]) H = nx.transitive_closure(G) for u, v in G.edges(): assert G.get_edge_data(u, v) == H.get_edge_data(u, v) k = 10 G = nx.DiGraph((i, i + 1, {"f": "b", "weight": i}) for i in range(k)) H = nx.transitive_closure(G) for u, v in G.edges(): assert G.get_edge_data(u, v) == H.get_edge_data(u, v) G = nx.Graph() with pytest.raises(nx.NetworkXError): nx.transitive_closure(G, reflexive="wrong input") def test_reflexive_transitive_closure(self): G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] soln = sorted(solution + [(n, n) for n in G]) assert edges_equal(nx.transitive_closure(G).edges(), solution) assert edges_equal(nx.transitive_closure(G, False).edges(), solution) assert edges_equal(nx.transitive_closure(G, True).edges(), soln) assert edges_equal(nx.transitive_closure(G, None).edges(), solution) G = nx.DiGraph([(1, 2), (2, 3), (2, 4)]) solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)] soln = sorted(solution + [(n, n) for n in G]) assert edges_equal(nx.transitive_closure(G).edges(), solution) assert edges_equal(nx.transitive_closure(G, False).edges(), solution) assert edges_equal(nx.transitive_closure(G, True).edges(), soln) assert edges_equal(nx.transitive_closure(G, None).edges(), solution) G = nx.DiGraph([(1, 2), (2, 3), (3, 1)]) solution = sorted([(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)]) soln = sorted(solution + [(n, n) for n in G]) assert edges_equal(sorted(nx.transitive_closure(G).edges()), soln) assert edges_equal(sorted(nx.transitive_closure(G, False).edges()), soln) assert edges_equal(sorted(nx.transitive_closure(G, None).edges()), solution) assert edges_equal(sorted(nx.transitive_closure(G, True).edges()), soln) G = nx.Graph([(1, 2), (2, 3), (3, 4)]) solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] soln = sorted(solution + [(n, n) for n in G]) assert edges_equal(nx.transitive_closure(G).edges(), solution) assert edges_equal(nx.transitive_closure(G, False).edges(), solution) assert edges_equal(nx.transitive_closure(G, True).edges(), soln) assert edges_equal(nx.transitive_closure(G, None).edges(), solution) G = nx.MultiGraph([(1, 2), (2, 3), (3, 4)]) solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] soln = sorted(solution + [(n, n) for n in G]) assert edges_equal(nx.transitive_closure(G).edges(), solution) assert edges_equal(nx.transitive_closure(G, False).edges(), solution) assert edges_equal(nx.transitive_closure(G, True).edges(), soln) assert edges_equal(nx.transitive_closure(G, None).edges(), solution) G = nx.MultiDiGraph([(1, 2), (2, 3), (3, 4)]) solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] soln = sorted(solution + [(n, n) for n in G]) assert edges_equal(nx.transitive_closure(G).edges(), solution) assert edges_equal(nx.transitive_closure(G, False).edges(), solution) assert edges_equal(nx.transitive_closure(G, True).edges(), soln) assert edges_equal(nx.transitive_closure(G, None).edges(), solution) def test_transitive_closure_dag(self): G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) transitive_closure = nx.algorithms.dag.transitive_closure_dag solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] assert edges_equal(transitive_closure(G).edges(), solution) G = nx.DiGraph([(1, 2), (2, 3), (2, 4)]) solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)] assert edges_equal(transitive_closure(G).edges(), solution) G = nx.Graph([(1, 2), (2, 3), (3, 4)]) pytest.raises(nx.NetworkXNotImplemented, transitive_closure, G) # test if edge data is copied G = nx.DiGraph([(1, 2, {"a": 3}), (2, 3, {"b": 0}), (3, 4)]) H = transitive_closure(G) for u, v in G.edges(): assert G.get_edge_data(u, v) == H.get_edge_data(u, v) k = 10 G = nx.DiGraph((i, i + 1, {"foo": "bar", "weight": i}) for i in range(k)) H = transitive_closure(G) for u, v in G.edges(): assert G.get_edge_data(u, v) == H.get_edge_data(u, v) def test_transitive_reduction(self): G = nx.DiGraph([(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]) transitive_reduction = nx.algorithms.dag.transitive_reduction solution = [(1, 2), (2, 3), (3, 4)] assert edges_equal(transitive_reduction(G).edges(), solution) G = nx.DiGraph([(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)]) transitive_reduction = nx.algorithms.dag.transitive_reduction solution = [(1, 2), (2, 3), (2, 4)] assert edges_equal(transitive_reduction(G).edges(), solution) G = nx.Graph([(1, 2), (2, 3), (3, 4)]) pytest.raises(nx.NetworkXNotImplemented, transitive_reduction, G) def _check_antichains(self, solution, result): sol = [frozenset(a) for a in solution] res = [frozenset(a) for a in result] assert set(sol) == set(res) def test_antichains(self): antichains = nx.algorithms.dag.antichains G = nx.DiGraph([(1, 2), (2, 3), (3, 4)]) solution = [[], [4], [3], [2], [1]] self._check_antichains(list(antichains(G)), solution) G = nx.DiGraph([(1, 2), (2, 3), (2, 4), (3, 5), (5, 6), (5, 7)]) solution = [ [], [4], [7], [7, 4], [6], [6, 4], [6, 7], [6, 7, 4], [5], [5, 4], [3], [3, 4], [2], [1], ] self._check_antichains(list(antichains(G)), solution) G = nx.DiGraph([(1, 2), (1, 3), (3, 4), (3, 5), (5, 6)]) solution = [ [], [6], [5], [4], [4, 6], [4, 5], [3], [2], [2, 6], [2, 5], [2, 4], [2, 4, 6], [2, 4, 5], [2, 3], [1], ] self._check_antichains(list(antichains(G)), solution) G = nx.DiGraph({0: [1, 2], 1: [4], 2: [3], 3: [4]}) solution = [[], [4], [3], [2], [1], [1, 3], [1, 2], [0]] self._check_antichains(list(antichains(G)), solution) G = nx.DiGraph() self._check_antichains(list(antichains(G)), [[]]) G = nx.DiGraph() G.add_nodes_from([0, 1, 2]) solution = [[], [0], [1], [1, 0], [2], [2, 0], [2, 1], [2, 1, 0]] self._check_antichains(list(antichains(G)), solution) def f(x): return list(antichains(x)) G = nx.Graph([(1, 2), (2, 3), (3, 4)]) pytest.raises(nx.NetworkXNotImplemented, f, G) G = nx.DiGraph([(1, 2), (2, 3), (3, 1)]) pytest.raises(nx.NetworkXUnfeasible, f, G) def test_lexicographical_topological_sort(self): G = nx.DiGraph([(1, 2), (2, 3), (1, 4), (1, 5), (2, 6)]) assert list(nx.lexicographical_topological_sort(G)) == [1, 2, 3, 4, 5, 6] assert list(nx.lexicographical_topological_sort(G, key=lambda x: x)) == [ 1, 2, 3, 4, 5, 6, ] assert list(nx.lexicographical_topological_sort(G, key=lambda x: -x)) == [ 1, 5, 4, 2, 6, 3, ] def test_lexicographical_topological_sort2(self): """ Check the case of two or more nodes with same key value. Want to avoid exception raised due to comparing nodes directly. See Issue #3493 """ class Test_Node: def __init__(self, n): self.label = n self.priority = 1 def __repr__(self): return f"Node({self.label})" def sorting_key(node): return node.priority test_nodes = [Test_Node(n) for n in range(4)] G = nx.DiGraph() edges = [(0, 1), (0, 2), (0, 3), (2, 3)] G.add_edges_from((test_nodes[a], test_nodes[b]) for a, b in edges) sorting = list(nx.lexicographical_topological_sort(G, key=sorting_key)) assert sorting == test_nodes def test_topological_generations(): G = nx.DiGraph( {1: [2, 3], 2: [4, 5], 3: [7], 4: [], 5: [6, 7], 6: [], 7: []} ).reverse() # order within each generation is inconsequential generations = [sorted(gen) for gen in nx.topological_generations(G)] expected = [[4, 6, 7], [3, 5], [2], [1]] assert generations == expected MG = nx.MultiDiGraph(G.edges) MG.add_edge(2, 1) generations = [sorted(gen) for gen in nx.topological_generations(MG)] assert generations == expected def test_topological_generations_empty(): G = nx.DiGraph() assert list(nx.topological_generations(G)) == [] def test_topological_generations_cycle(): G = nx.DiGraph([[2, 1], [3, 1], [1, 2]]) with pytest.raises(nx.NetworkXUnfeasible): list(nx.topological_generations(G)) def test_is_aperiodic_cycle(): G = nx.DiGraph() nx.add_cycle(G, [1, 2, 3, 4]) assert not nx.is_aperiodic(G) def test_is_aperiodic_cycle2(): G = nx.DiGraph() nx.add_cycle(G, [1, 2, 3, 4]) nx.add_cycle(G, [3, 4, 5, 6, 7]) assert nx.is_aperiodic(G) def test_is_aperiodic_cycle3(): G = nx.DiGraph() nx.add_cycle(G, [1, 2, 3, 4]) nx.add_cycle(G, [3, 4, 5, 6]) assert not nx.is_aperiodic(G) def test_is_aperiodic_cycle4(): G = nx.DiGraph() nx.add_cycle(G, [1, 2, 3, 4]) G.add_edge(1, 3) assert nx.is_aperiodic(G) def test_is_aperiodic_selfloop(): G = nx.DiGraph() nx.add_cycle(G, [1, 2, 3, 4]) G.add_edge(1, 1) assert nx.is_aperiodic(G) def test_is_aperiodic_raise(): G = nx.Graph() pytest.raises(nx.NetworkXError, nx.is_aperiodic, G) def test_is_aperiodic_bipartite(): # Bipartite graph G = nx.DiGraph(nx.davis_southern_women_graph()) assert not nx.is_aperiodic(G) def test_is_aperiodic_rary_tree(): G = nx.full_rary_tree(3, 27, create_using=nx.DiGraph()) assert not nx.is_aperiodic(G) def test_is_aperiodic_disconnected(): # disconnected graph G = nx.DiGraph() nx.add_cycle(G, [1, 2, 3, 4]) nx.add_cycle(G, [5, 6, 7, 8]) assert not nx.is_aperiodic(G) G.add_edge(1, 3) G.add_edge(5, 7) assert nx.is_aperiodic(G) def test_is_aperiodic_disconnected2(): G = nx.DiGraph() nx.add_cycle(G, [0, 1, 2]) G.add_edge(3, 3) assert not nx.is_aperiodic(G) class TestDagToBranching: """Unit tests for the :func:`networkx.dag_to_branching` function.""" def test_single_root(self): """Tests that a directed acyclic graph with a single degree zero node produces an arborescence. """ G = nx.DiGraph([(0, 1), (0, 2), (1, 3), (2, 3)]) B = nx.dag_to_branching(G) expected = nx.DiGraph([(0, 1), (1, 3), (0, 2), (2, 4)]) assert nx.is_arborescence(B) assert nx.is_isomorphic(B, expected) def test_multiple_roots(self): """Tests that a directed acyclic graph with multiple degree zero nodes creates an arborescence with multiple (weakly) connected components. """ G = nx.DiGraph([(0, 1), (0, 2), (1, 3), (2, 3), (5, 2)]) B = nx.dag_to_branching(G) expected = nx.DiGraph([(0, 1), (1, 3), (0, 2), (2, 4), (5, 6), (6, 7)]) assert nx.is_branching(B) assert not nx.is_arborescence(B) assert nx.is_isomorphic(B, expected) # # Attributes are not copied by this function. If they were, this would # # be a good test to uncomment. # def test_copy_attributes(self): # """Tests that node attributes are copied in the branching.""" # G = nx.DiGraph([(0, 1), (0, 2), (1, 3), (2, 3)]) # for v in G: # G.node[v]['label'] = str(v) # B = nx.dag_to_branching(G) # # Determine the root node of the branching. # root = next(v for v, d in B.in_degree() if d == 0) # assert_equal(B.node[root]['label'], '0') # children = B[root] # # Get the left and right children, nodes 1 and 2, respectively. # left, right = sorted(children, key=lambda v: B.node[v]['label']) # assert_equal(B.node[left]['label'], '1') # assert_equal(B.node[right]['label'], '2') # # Get the left grandchild. # children = B[left] # assert_equal(len(children), 1) # left_grandchild = arbitrary_element(children) # assert_equal(B.node[left_grandchild]['label'], '3') # # Get the right grandchild. # children = B[right] # assert_equal(len(children), 1) # right_grandchild = arbitrary_element(children) # assert_equal(B.node[right_grandchild]['label'], '3') def test_already_arborescence(self): """Tests that a directed acyclic graph that is already an arborescence produces an isomorphic arborescence as output. """ A = nx.balanced_tree(2, 2, create_using=nx.DiGraph()) B = nx.dag_to_branching(A) assert nx.is_isomorphic(A, B) def test_already_branching(self): """Tests that a directed acyclic graph that is already a branching produces an isomorphic branching as output. """ T1 = nx.balanced_tree(2, 2, create_using=nx.DiGraph()) T2 = nx.balanced_tree(2, 2, create_using=nx.DiGraph()) G = nx.disjoint_union(T1, T2) B = nx.dag_to_branching(G) assert nx.is_isomorphic(G, B) def test_not_acyclic(self): """Tests that a non-acyclic graph causes an exception.""" with pytest.raises(nx.HasACycle): G = nx.DiGraph(pairwise("abc", cyclic=True)) nx.dag_to_branching(G) def test_undirected(self): with pytest.raises(nx.NetworkXNotImplemented): nx.dag_to_branching(nx.Graph()) def test_multigraph(self): with pytest.raises(nx.NetworkXNotImplemented): nx.dag_to_branching(nx.MultiGraph()) def test_multidigraph(self): with pytest.raises(nx.NetworkXNotImplemented): nx.dag_to_branching(nx.MultiDiGraph()) def test_ancestors_descendants_undirected(): """Regression test to ensure anscestors and descendants work as expected on undirected graphs.""" G = nx.path_graph(5) nx.ancestors(G, 2) == nx.descendants(G, 2) == {0, 1, 3, 4}