import networkx as nx import pytest class TestImmediateDominators: def test_exceptions(self): G = nx.Graph() G.add_node(0) pytest.raises(nx.NetworkXNotImplemented, nx.immediate_dominators, G, 0) G = nx.MultiGraph(G) pytest.raises(nx.NetworkXNotImplemented, nx.immediate_dominators, G, 0) G = nx.DiGraph([[0, 0]]) pytest.raises(nx.NetworkXError, nx.immediate_dominators, G, 1) def test_singleton(self): G = nx.DiGraph() G.add_node(0) assert nx.immediate_dominators(G, 0) == {0: 0} G.add_edge(0, 0) assert nx.immediate_dominators(G, 0) == {0: 0} def test_path(self): n = 5 G = nx.path_graph(n, create_using=nx.DiGraph()) assert nx.immediate_dominators(G, 0) == {i: max(i - 1, 0) for i in range(n)} def test_cycle(self): n = 5 G = nx.cycle_graph(n, create_using=nx.DiGraph()) assert nx.immediate_dominators(G, 0) == {i: max(i - 1, 0) for i in range(n)} def test_unreachable(self): n = 5 assert n > 1 G = nx.path_graph(n, create_using=nx.DiGraph()) assert nx.immediate_dominators(G, n // 2) == { i: max(i - 1, n // 2) for i in range(n // 2, n) } def test_irreducible1(self): # Graph taken from Figure 2 of # K. D. Cooper, T. J. Harvey, and K. Kennedy. # A simple, fast dominance algorithm. # Software Practice & Experience, 4:110, 2001. edges = [(1, 2), (2, 1), (3, 2), (4, 1), (5, 3), (5, 4)] G = nx.DiGraph(edges) assert nx.immediate_dominators(G, 5) == {i: 5 for i in range(1, 6)} def test_irreducible2(self): # Graph taken from Figure 4 of # K. D. Cooper, T. J. Harvey, and K. Kennedy. # A simple, fast dominance algorithm. # Software Practice & Experience, 4:110, 2001. edges = [(1, 2), (2, 1), (2, 3), (3, 2), (4, 2), (4, 3), (5, 1), (6, 4), (6, 5)] G = nx.DiGraph(edges) result = nx.immediate_dominators(G, 6) assert result == {i: 6 for i in range(1, 7)} def test_domrel_png(self): # Graph taken from https://commons.wikipedia.org/wiki/File:Domrel.png edges = [(1, 2), (2, 3), (2, 4), (2, 6), (3, 5), (4, 5), (5, 2)] G = nx.DiGraph(edges) result = nx.immediate_dominators(G, 1) assert result == {1: 1, 2: 1, 3: 2, 4: 2, 5: 2, 6: 2} # Test postdominance. result = nx.immediate_dominators(G.reverse(copy=False), 6) assert result == {1: 2, 2: 6, 3: 5, 4: 5, 5: 2, 6: 6} def test_boost_example(self): # Graph taken from Figure 1 of # http://www.boost.org/doc/libs/1_56_0/libs/graph/doc/lengauer_tarjan_dominator.htm edges = [(0, 1), (1, 2), (1, 3), (2, 7), (3, 4), (4, 5), (4, 6), (5, 7), (6, 4)] G = nx.DiGraph(edges) result = nx.immediate_dominators(G, 0) assert result == {0: 0, 1: 0, 2: 1, 3: 1, 4: 3, 5: 4, 6: 4, 7: 1} # Test postdominance. result = nx.immediate_dominators(G.reverse(copy=False), 7) assert result == {0: 1, 1: 7, 2: 7, 3: 4, 4: 5, 5: 7, 6: 4, 7: 7} class TestDominanceFrontiers: def test_exceptions(self): G = nx.Graph() G.add_node(0) pytest.raises(nx.NetworkXNotImplemented, nx.dominance_frontiers, G, 0) G = nx.MultiGraph(G) pytest.raises(nx.NetworkXNotImplemented, nx.dominance_frontiers, G, 0) G = nx.DiGraph([[0, 0]]) pytest.raises(nx.NetworkXError, nx.dominance_frontiers, G, 1) def test_singleton(self): G = nx.DiGraph() G.add_node(0) assert nx.dominance_frontiers(G, 0) == {0: set()} G.add_edge(0, 0) assert nx.dominance_frontiers(G, 0) == {0: set()} def test_path(self): n = 5 G = nx.path_graph(n, create_using=nx.DiGraph()) assert nx.dominance_frontiers(G, 0) == {i: set() for i in range(n)} def test_cycle(self): n = 5 G = nx.cycle_graph(n, create_using=nx.DiGraph()) assert nx.dominance_frontiers(G, 0) == {i: set() for i in range(n)} def test_unreachable(self): n = 5 assert n > 1 G = nx.path_graph(n, create_using=nx.DiGraph()) assert nx.dominance_frontiers(G, n // 2) == {i: set() for i in range(n // 2, n)} def test_irreducible1(self): # Graph taken from Figure 2 of # K. D. Cooper, T. J. Harvey, and K. Kennedy. # A simple, fast dominance algorithm. # Software Practice & Experience, 4:110, 2001. edges = [(1, 2), (2, 1), (3, 2), (4, 1), (5, 3), (5, 4)] G = nx.DiGraph(edges) assert {u: df for u, df in nx.dominance_frontiers(G, 5).items()} == { 1: {2}, 2: {1}, 3: {2}, 4: {1}, 5: set(), } def test_irreducible2(self): # Graph taken from Figure 4 of # K. D. Cooper, T. J. Harvey, and K. Kennedy. # A simple, fast dominance algorithm. # Software Practice & Experience, 4:110, 2001. edges = [(1, 2), (2, 1), (2, 3), (3, 2), (4, 2), (4, 3), (5, 1), (6, 4), (6, 5)] G = nx.DiGraph(edges) assert nx.dominance_frontiers(G, 6) == { 1: {2}, 2: {1, 3}, 3: {2}, 4: {2, 3}, 5: {1}, 6: set(), } def test_domrel_png(self): # Graph taken from https://commons.wikipedia.org/wiki/File:Domrel.png edges = [(1, 2), (2, 3), (2, 4), (2, 6), (3, 5), (4, 5), (5, 2)] G = nx.DiGraph(edges) assert nx.dominance_frontiers(G, 1) == { 1: set(), 2: {2}, 3: {5}, 4: {5}, 5: {2}, 6: set(), } # Test postdominance. result = nx.dominance_frontiers(G.reverse(copy=False), 6) assert result == {1: set(), 2: {2}, 3: {2}, 4: {2}, 5: {2}, 6: set()} def test_boost_example(self): # Graph taken from Figure 1 of # http://www.boost.org/doc/libs/1_56_0/libs/graph/doc/lengauer_tarjan_dominator.htm edges = [(0, 1), (1, 2), (1, 3), (2, 7), (3, 4), (4, 5), (4, 6), (5, 7), (6, 4)] G = nx.DiGraph(edges) assert nx.dominance_frontiers(G, 0) == { 0: set(), 1: set(), 2: {7}, 3: {7}, 4: {4, 7}, 5: {7}, 6: {4}, 7: set(), } # Test postdominance. result = nx.dominance_frontiers(G.reverse(copy=False), 7) expected = { 0: set(), 1: set(), 2: {1}, 3: {1}, 4: {1, 4}, 5: {1}, 6: {4}, 7: set(), } assert result == expected def test_discard_issue(self): # https://github.com/networkx/networkx/issues/2071 g = nx.DiGraph() g.add_edges_from( [ ("b0", "b1"), ("b1", "b2"), ("b2", "b3"), ("b3", "b1"), ("b1", "b5"), ("b5", "b6"), ("b5", "b8"), ("b6", "b7"), ("b8", "b7"), ("b7", "b3"), ("b3", "b4"), ] ) df = nx.dominance_frontiers(g, "b0") assert df == { "b4": set(), "b5": {"b3"}, "b6": {"b7"}, "b7": {"b3"}, "b0": set(), "b1": {"b1"}, "b2": {"b3"}, "b3": {"b1"}, "b8": {"b7"}, } def test_loop(self): g = nx.DiGraph() g.add_edges_from([("a", "b"), ("b", "c"), ("b", "a")]) df = nx.dominance_frontiers(g, "a") assert df == {"a": set(), "b": set(), "c": set()} def test_missing_immediate_doms(self): # see https://github.com/networkx/networkx/issues/2070 g = nx.DiGraph() edges = [ ("entry_1", "b1"), ("b1", "b2"), ("b2", "b3"), ("b3", "exit"), ("entry_2", "b3"), ] # entry_1 # | # b1 # | # b2 entry_2 # | / # b3 # | # exit g.add_edges_from(edges) # formerly raised KeyError on entry_2 when parsing b3 # because entry_2 does not have immediate doms (no path) nx.dominance_frontiers(g, "entry_1") def test_loops_larger(self): # from # http://ecee.colorado.edu/~waite/Darmstadt/motion.html g = nx.DiGraph() edges = [ ("entry", "exit"), ("entry", "1"), ("1", "2"), ("2", "3"), ("3", "4"), ("4", "5"), ("5", "6"), ("6", "exit"), ("6", "2"), ("5", "3"), ("4", "4"), ] g.add_edges_from(edges) df = nx.dominance_frontiers(g, "entry") answer = { "entry": set(), "1": {"exit"}, "2": {"exit", "2"}, "3": {"exit", "3", "2"}, "4": {"exit", "4", "3", "2"}, "5": {"exit", "3", "2"}, "6": {"exit", "2"}, "exit": set(), } for n in df: assert set(df[n]) == set(answer[n])