import math from functools import partial import pytest import networkx as nx def _test_func(G, ebunch, expected, predict_func, **kwargs): result = predict_func(G, ebunch, **kwargs) exp_dict = {tuple(sorted([u, v])): score for u, v, score in expected} res_dict = {tuple(sorted([u, v])): score for u, v, score in result} assert len(exp_dict) == len(res_dict) for p in exp_dict: assert exp_dict[p] == pytest.approx(res_dict[p], abs=1e-7) class TestResourceAllocationIndex: @classmethod def setup_class(cls): cls.func = staticmethod(nx.resource_allocation_index) cls.test = partial(_test_func, predict_func=cls.func) def test_K5(self): G = nx.complete_graph(5) self.test(G, [(0, 1)], [(0, 1, 0.75)]) def test_P3(self): G = nx.path_graph(3) self.test(G, [(0, 2)], [(0, 2, 0.5)]) def test_S4(self): G = nx.star_graph(4) self.test(G, [(1, 2)], [(1, 2, 0.25)]) def test_notimplemented(self): assert pytest.raises( nx.NetworkXNotImplemented, self.func, nx.DiGraph([(0, 1), (1, 2)]), [(0, 2)] ) assert pytest.raises( nx.NetworkXNotImplemented, self.func, nx.MultiGraph([(0, 1), (1, 2)]), [(0, 2)], ) assert pytest.raises( nx.NetworkXNotImplemented, self.func, nx.MultiDiGraph([(0, 1), (1, 2)]), [(0, 2)], ) def test_no_common_neighbor(self): G = nx.Graph() G.add_nodes_from([0, 1]) self.test(G, [(0, 1)], [(0, 1, 0)]) def test_equal_nodes(self): G = nx.complete_graph(4) self.test(G, [(0, 0)], [(0, 0, 1)]) def test_all_nonexistent_edges(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (2, 3)]) self.test(G, None, [(0, 3, 0.5), (1, 2, 0.5), (1, 3, 0)]) class TestJaccardCoefficient: @classmethod def setup_class(cls): cls.func = staticmethod(nx.jaccard_coefficient) cls.test = partial(_test_func, predict_func=cls.func) def test_K5(self): G = nx.complete_graph(5) self.test(G, [(0, 1)], [(0, 1, 0.6)]) def test_P4(self): G = nx.path_graph(4) self.test(G, [(0, 2)], [(0, 2, 0.5)]) def test_notimplemented(self): assert pytest.raises( nx.NetworkXNotImplemented, self.func, nx.DiGraph([(0, 1), (1, 2)]), [(0, 2)] ) assert pytest.raises( nx.NetworkXNotImplemented, self.func, nx.MultiGraph([(0, 1), (1, 2)]), [(0, 2)], ) assert pytest.raises( nx.NetworkXNotImplemented, self.func, nx.MultiDiGraph([(0, 1), (1, 2)]), [(0, 2)], ) def test_no_common_neighbor(self): G = nx.Graph() G.add_edges_from([(0, 1), (2, 3)]) self.test(G, [(0, 2)], [(0, 2, 0)]) def test_isolated_nodes(self): G = nx.Graph() G.add_nodes_from([0, 1]) self.test(G, [(0, 1)], [(0, 1, 0)]) def test_all_nonexistent_edges(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (2, 3)]) self.test(G, None, [(0, 3, 0.5), (1, 2, 0.5), (1, 3, 0)]) class TestAdamicAdarIndex: @classmethod def setup_class(cls): cls.func = staticmethod(nx.adamic_adar_index) cls.test = partial(_test_func, predict_func=cls.func) def test_K5(self): G = nx.complete_graph(5) self.test(G, [(0, 1)], [(0, 1, 3 / math.log(4))]) def test_P3(self): G = nx.path_graph(3) self.test(G, [(0, 2)], [(0, 2, 1 / math.log(2))]) def test_S4(self): G = nx.star_graph(4) self.test(G, [(1, 2)], [(1, 2, 1 / math.log(4))]) def test_notimplemented(self): assert pytest.raises( nx.NetworkXNotImplemented, self.func, nx.DiGraph([(0, 1), (1, 2)]), [(0, 2)] ) assert pytest.raises( nx.NetworkXNotImplemented, self.func, nx.MultiGraph([(0, 1), (1, 2)]), [(0, 2)], ) assert pytest.raises( nx.NetworkXNotImplemented, self.func, nx.MultiDiGraph([(0, 1), (1, 2)]), [(0, 2)], ) def test_no_common_neighbor(self): G = nx.Graph() G.add_nodes_from([0, 1]) self.test(G, [(0, 1)], [(0, 1, 0)]) def test_equal_nodes(self): G = nx.complete_graph(4) self.test(G, [(0, 0)], [(0, 0, 3 / math.log(3))]) def test_all_nonexistent_edges(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (2, 3)]) self.test( G, None, [(0, 3, 1 / math.log(2)), (1, 2, 1 / math.log(2)), (1, 3, 0)] ) class TestCommonNeighborCentrality: @classmethod def setup_class(cls): cls.func = staticmethod(nx.common_neighbor_centrality) cls.test = partial(_test_func, predict_func=cls.func) def test_K5(self): G = nx.complete_graph(5) self.test(G, [(0, 1)], [(0, 1, 3.0)], alpha=1) self.test(G, [(0, 1)], [(0, 1, 5.0)], alpha=0) def test_P3(self): G = nx.path_graph(3) self.test(G, [(0, 2)], [(0, 2, 1.25)], alpha=0.5) def test_S4(self): G = nx.star_graph(4) self.test(G, [(1, 2)], [(1, 2, 1.75)], alpha=0.5) @pytest.mark.parametrize("graph_type", (nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)) def test_notimplemented(self, graph_type): assert pytest.raises( nx.NetworkXNotImplemented, self.func, graph_type([(0, 1), (1, 2)]), [(0, 2)] ) def test_no_common_neighbor(self): G = nx.Graph() G.add_nodes_from([0, 1]) self.test(G, [(0, 1)], [(0, 1, 0)]) def test_equal_nodes(self): G = nx.complete_graph(4) assert pytest.raises(nx.NetworkXAlgorithmError, self.test, G, [(0, 0)], []) def test_all_nonexistent_edges(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (2, 3)]) self.test(G, None, [(0, 3, 1.5), (1, 2, 1.5), (1, 3, 2 / 3)], alpha=0.5) class TestPreferentialAttachment: @classmethod def setup_class(cls): cls.func = staticmethod(nx.preferential_attachment) cls.test = partial(_test_func, predict_func=cls.func) def test_K5(self): G = nx.complete_graph(5) self.test(G, [(0, 1)], [(0, 1, 16)]) def test_P3(self): G = nx.path_graph(3) self.test(G, [(0, 1)], [(0, 1, 2)]) def test_S4(self): G = nx.star_graph(4) self.test(G, [(0, 2)], [(0, 2, 4)]) def test_notimplemented(self): assert pytest.raises( nx.NetworkXNotImplemented, self.func, nx.DiGraph([(0, 1), (1, 2)]), [(0, 2)] ) assert pytest.raises( nx.NetworkXNotImplemented, self.func, nx.MultiGraph([(0, 1), (1, 2)]), [(0, 2)], ) assert pytest.raises( nx.NetworkXNotImplemented, self.func, nx.MultiDiGraph([(0, 1), (1, 2)]), [(0, 2)], ) def test_zero_degrees(self): G = nx.Graph() G.add_nodes_from([0, 1]) self.test(G, [(0, 1)], [(0, 1, 0)]) def test_all_nonexistent_edges(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (2, 3)]) self.test(G, None, [(0, 3, 2), (1, 2, 2), (1, 3, 1)]) class TestCNSoundarajanHopcroft: @classmethod def setup_class(cls): cls.func = staticmethod(nx.cn_soundarajan_hopcroft) cls.test = partial(_test_func, predict_func=cls.func, community="community") def test_K5(self): G = nx.complete_graph(5) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 0 G.nodes[4]["community"] = 1 self.test(G, [(0, 1)], [(0, 1, 5)]) def test_P3(self): G = nx.path_graph(3) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 1 G.nodes[2]["community"] = 0 self.test(G, [(0, 2)], [(0, 2, 1)]) def test_S4(self): G = nx.star_graph(4) G.nodes[0]["community"] = 1 G.nodes[1]["community"] = 1 G.nodes[2]["community"] = 1 G.nodes[3]["community"] = 0 G.nodes[4]["community"] = 0 self.test(G, [(1, 2)], [(1, 2, 2)]) def test_notimplemented(self): G = nx.DiGraph([(0, 1), (1, 2)]) G.add_nodes_from([0, 1, 2], community=0) assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) G = nx.MultiGraph([(0, 1), (1, 2)]) G.add_nodes_from([0, 1, 2], community=0) assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) G = nx.MultiDiGraph([(0, 1), (1, 2)]) G.add_nodes_from([0, 1, 2], community=0) assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) def test_no_common_neighbor(self): G = nx.Graph() G.add_nodes_from([0, 1]) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 self.test(G, [(0, 1)], [(0, 1, 0)]) def test_equal_nodes(self): G = nx.complete_graph(3) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 self.test(G, [(0, 0)], [(0, 0, 4)]) def test_different_community(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 1 self.test(G, [(0, 3)], [(0, 3, 2)]) def test_no_community_information(self): G = nx.complete_graph(5) assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 1)])) def test_insufficient_community_information(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[3]["community"] = 0 assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 3)])) def test_sufficient_community_information(self): G = nx.Graph() G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)]) G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 0 G.nodes[4]["community"] = 0 self.test(G, [(1, 4)], [(1, 4, 4)]) def test_custom_community_attribute_name(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) G.nodes[0]["cmty"] = 0 G.nodes[1]["cmty"] = 0 G.nodes[2]["cmty"] = 0 G.nodes[3]["cmty"] = 1 self.test(G, [(0, 3)], [(0, 3, 2)], community="cmty") def test_all_nonexistent_edges(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (2, 3)]) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 1 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 0 self.test(G, None, [(0, 3, 2), (1, 2, 1), (1, 3, 0)]) class TestRAIndexSoundarajanHopcroft: @classmethod def setup_class(cls): cls.func = staticmethod(nx.ra_index_soundarajan_hopcroft) cls.test = partial(_test_func, predict_func=cls.func, community="community") def test_K5(self): G = nx.complete_graph(5) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 0 G.nodes[4]["community"] = 1 self.test(G, [(0, 1)], [(0, 1, 0.5)]) def test_P3(self): G = nx.path_graph(3) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 1 G.nodes[2]["community"] = 0 self.test(G, [(0, 2)], [(0, 2, 0)]) def test_S4(self): G = nx.star_graph(4) G.nodes[0]["community"] = 1 G.nodes[1]["community"] = 1 G.nodes[2]["community"] = 1 G.nodes[3]["community"] = 0 G.nodes[4]["community"] = 0 self.test(G, [(1, 2)], [(1, 2, 0.25)]) def test_notimplemented(self): G = nx.DiGraph([(0, 1), (1, 2)]) G.add_nodes_from([0, 1, 2], community=0) assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) G = nx.MultiGraph([(0, 1), (1, 2)]) G.add_nodes_from([0, 1, 2], community=0) assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) G = nx.MultiDiGraph([(0, 1), (1, 2)]) G.add_nodes_from([0, 1, 2], community=0) assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) def test_no_common_neighbor(self): G = nx.Graph() G.add_nodes_from([0, 1]) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 self.test(G, [(0, 1)], [(0, 1, 0)]) def test_equal_nodes(self): G = nx.complete_graph(3) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 self.test(G, [(0, 0)], [(0, 0, 1)]) def test_different_community(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 1 self.test(G, [(0, 3)], [(0, 3, 0)]) def test_no_community_information(self): G = nx.complete_graph(5) assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 1)])) def test_insufficient_community_information(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[3]["community"] = 0 assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 3)])) def test_sufficient_community_information(self): G = nx.Graph() G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)]) G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 0 G.nodes[4]["community"] = 0 self.test(G, [(1, 4)], [(1, 4, 1)]) def test_custom_community_attribute_name(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) G.nodes[0]["cmty"] = 0 G.nodes[1]["cmty"] = 0 G.nodes[2]["cmty"] = 0 G.nodes[3]["cmty"] = 1 self.test(G, [(0, 3)], [(0, 3, 0)], community="cmty") def test_all_nonexistent_edges(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (2, 3)]) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 1 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 0 self.test(G, None, [(0, 3, 0.5), (1, 2, 0), (1, 3, 0)]) class TestWithinInterCluster: @classmethod def setup_class(cls): cls.delta = 0.001 cls.func = staticmethod(nx.within_inter_cluster) cls.test = partial( _test_func, predict_func=cls.func, delta=cls.delta, community="community" ) def test_K5(self): G = nx.complete_graph(5) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 0 G.nodes[4]["community"] = 1 self.test(G, [(0, 1)], [(0, 1, 2 / (1 + self.delta))]) def test_P3(self): G = nx.path_graph(3) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 1 G.nodes[2]["community"] = 0 self.test(G, [(0, 2)], [(0, 2, 0)]) def test_S4(self): G = nx.star_graph(4) G.nodes[0]["community"] = 1 G.nodes[1]["community"] = 1 G.nodes[2]["community"] = 1 G.nodes[3]["community"] = 0 G.nodes[4]["community"] = 0 self.test(G, [(1, 2)], [(1, 2, 1 / self.delta)]) def test_notimplemented(self): G = nx.DiGraph([(0, 1), (1, 2)]) G.add_nodes_from([0, 1, 2], community=0) assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) G = nx.MultiGraph([(0, 1), (1, 2)]) G.add_nodes_from([0, 1, 2], community=0) assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) G = nx.MultiDiGraph([(0, 1), (1, 2)]) G.add_nodes_from([0, 1, 2], community=0) assert pytest.raises(nx.NetworkXNotImplemented, self.func, G, [(0, 2)]) def test_no_common_neighbor(self): G = nx.Graph() G.add_nodes_from([0, 1]) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 self.test(G, [(0, 1)], [(0, 1, 0)]) def test_equal_nodes(self): G = nx.complete_graph(3) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 self.test(G, [(0, 0)], [(0, 0, 2 / self.delta)]) def test_different_community(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 1 self.test(G, [(0, 3)], [(0, 3, 0)]) def test_no_inter_cluster_common_neighbor(self): G = nx.complete_graph(4) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 0 self.test(G, [(0, 3)], [(0, 3, 2 / self.delta)]) def test_no_community_information(self): G = nx.complete_graph(5) assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 1)])) def test_insufficient_community_information(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)]) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 0 G.nodes[3]["community"] = 0 assert pytest.raises(nx.NetworkXAlgorithmError, list, self.func(G, [(0, 3)])) def test_sufficient_community_information(self): G = nx.Graph() G.add_edges_from([(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)]) G.nodes[1]["community"] = 0 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 0 G.nodes[4]["community"] = 0 self.test(G, [(1, 4)], [(1, 4, 2 / self.delta)]) def test_invalid_delta(self): G = nx.complete_graph(3) G.add_nodes_from([0, 1, 2], community=0) assert pytest.raises(nx.NetworkXAlgorithmError, self.func, G, [(0, 1)], 0) assert pytest.raises(nx.NetworkXAlgorithmError, self.func, G, [(0, 1)], -0.5) def test_custom_community_attribute_name(self): G = nx.complete_graph(4) G.nodes[0]["cmty"] = 0 G.nodes[1]["cmty"] = 0 G.nodes[2]["cmty"] = 0 G.nodes[3]["cmty"] = 0 self.test(G, [(0, 3)], [(0, 3, 2 / self.delta)], community="cmty") def test_all_nonexistent_edges(self): G = nx.Graph() G.add_edges_from([(0, 1), (0, 2), (2, 3)]) G.nodes[0]["community"] = 0 G.nodes[1]["community"] = 1 G.nodes[2]["community"] = 0 G.nodes[3]["community"] = 0 self.test(G, None, [(0, 3, 1 / self.delta), (1, 2, 0), (1, 3, 0)])