import pytest import networkx as nx from networkx.algorithms.planar_drawing import triangulate_embedding import math def test_graph1(): embedding_data = {0: [1, 2, 3], 1: [2, 0], 2: [3, 0, 1], 3: [2, 0]} check_embedding_data(embedding_data) def test_graph2(): embedding_data = { 0: [8, 6], 1: [2, 6, 9], 2: [8, 1, 7, 9, 6, 4], 3: [9], 4: [2], 5: [6, 8], 6: [9, 1, 0, 5, 2], 7: [9, 2], 8: [0, 2, 5], 9: [1, 6, 2, 7, 3], } check_embedding_data(embedding_data) def test_circle_graph(): embedding_data = { 0: [1, 9], 1: [0, 2], 2: [1, 3], 3: [2, 4], 4: [3, 5], 5: [4, 6], 6: [5, 7], 7: [6, 8], 8: [7, 9], 9: [8, 0], } check_embedding_data(embedding_data) def test_grid_graph(): embedding_data = { (0, 1): [(0, 0), (1, 1), (0, 2)], (1, 2): [(1, 1), (2, 2), (0, 2)], (0, 0): [(0, 1), (1, 0)], (2, 1): [(2, 0), (2, 2), (1, 1)], (1, 1): [(2, 1), (1, 2), (0, 1), (1, 0)], (2, 0): [(1, 0), (2, 1)], (2, 2): [(1, 2), (2, 1)], (1, 0): [(0, 0), (2, 0), (1, 1)], (0, 2): [(1, 2), (0, 1)], } check_embedding_data(embedding_data) def test_one_node_graph(): embedding_data = {0: []} check_embedding_data(embedding_data) def test_two_node_graph(): embedding_data = {0: [1], 1: [0]} check_embedding_data(embedding_data) def test_three_node_graph(): embedding_data = {0: [1, 2], 1: [0, 2], 2: [0, 1]} check_embedding_data(embedding_data) def test_multiple_component_graph1(): embedding_data = {0: [], 1: []} check_embedding_data(embedding_data) def test_multiple_component_graph2(): embedding_data = {0: [1, 2], 1: [0, 2], 2: [0, 1], 3: [4, 5], 4: [3, 5], 5: [3, 4]} check_embedding_data(embedding_data) def test_invalid_half_edge(): with pytest.raises(nx.NetworkXException): embedding_data = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2, 4], 4: [1, 2, 3]} embedding = nx.PlanarEmbedding() embedding.set_data(embedding_data) nx.combinatorial_embedding_to_pos(embedding) def test_triangulate_embedding1(): embedding = nx.PlanarEmbedding() embedding.add_node(1) expected_embedding = {1: []} check_triangulation(embedding, expected_embedding) def test_triangulate_embedding2(): embedding = nx.PlanarEmbedding() embedding.connect_components(1, 2) expected_embedding = {1: [2], 2: [1]} check_triangulation(embedding, expected_embedding) def check_triangulation(embedding, expected_embedding): res_embedding, _ = triangulate_embedding(embedding, True) assert ( res_embedding.get_data() == expected_embedding ), "Expected embedding incorrect" res_embedding, _ = triangulate_embedding(embedding, False) assert ( res_embedding.get_data() == expected_embedding ), "Expected embedding incorrect" def check_embedding_data(embedding_data): """Checks that the planar embedding of the input is correct""" embedding = nx.PlanarEmbedding() embedding.set_data(embedding_data) pos_fully = nx.combinatorial_embedding_to_pos(embedding, False) msg = "Planar drawing does not conform to the embedding (fully " "triangulation)" assert planar_drawing_conforms_to_embedding(embedding, pos_fully), msg check_edge_intersections(embedding, pos_fully) pos_internally = nx.combinatorial_embedding_to_pos(embedding, True) msg = "Planar drawing does not conform to the embedding (internal " "triangulation)" assert planar_drawing_conforms_to_embedding(embedding, pos_internally), msg check_edge_intersections(embedding, pos_internally) def is_close(a, b, rel_tol=1e-09, abs_tol=0.0): # Check if float numbers are basically equal, for python >=3.5 there is # function for that in the standard library return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) def point_in_between(a, b, p): # checks if p is on the line between a and b x1, y1 = a x2, y2 = b px, py = p dist_1_2 = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) dist_1_p = math.sqrt((x1 - px) ** 2 + (y1 - py) ** 2) dist_2_p = math.sqrt((x2 - px) ** 2 + (y2 - py) ** 2) return is_close(dist_1_p + dist_2_p, dist_1_2) def check_edge_intersections(G, pos): """Check all edges in G for intersections. Raises an exception if an intersection is found. Parameters ---------- G : NetworkX graph pos : dict Maps every node to a tuple (x, y) representing its position """ for a, b in G.edges(): for c, d in G.edges(): # Check if end points are different if a != c and b != d and b != c and a != d: x1, y1 = pos[a] x2, y2 = pos[b] x3, y3 = pos[c] x4, y4 = pos[d] determinant = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4) if determinant != 0: # the lines are not parallel # calculate intersection point, see: # https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection px = (x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * ( x3 * y4 - y3 * x4 ) / float(determinant) py = (x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * ( x3 * y4 - y3 * x4 ) / float(determinant) # Check if intersection lies between the points if point_in_between(pos[a], pos[b], (px, py)) and point_in_between( pos[c], pos[d], (px, py) ): msg = f"There is an intersection at {px},{py}" raise nx.NetworkXException(msg) # Check overlap msg = "A node lies on a edge connecting two other nodes" if ( point_in_between(pos[a], pos[b], pos[c]) or point_in_between(pos[a], pos[b], pos[d]) or point_in_between(pos[c], pos[d], pos[a]) or point_in_between(pos[c], pos[d], pos[b]) ): raise nx.NetworkXException(msg) # No edge intersection found class Vector: """Compare vectors by their angle without loss of precision All vectors in direction [0, 1] are the smallest. The vectors grow in clockwise direction. """ __slots__ = ["x", "y", "node", "quadrant"] def __init__(self, x, y, node): self.x = x self.y = y self.node = node if self.x >= 0 and self.y > 0: self.quadrant = 1 elif self.x > 0 and self.y <= 0: self.quadrant = 2 elif self.x <= 0 and self.y < 0: self.quadrant = 3 else: self.quadrant = 4 def __eq__(self, other): return self.quadrant == other.quadrant and self.x * other.y == self.y * other.x def __lt__(self, other): if self.quadrant < other.quadrant: return True elif self.quadrant > other.quadrant: return False else: return self.x * other.y < self.y * other.x def __ne__(self, other): return not self == other def __le__(self, other): return not other < self def __gt__(self, other): return other < self def __ge__(self, other): return not self < other def planar_drawing_conforms_to_embedding(embedding, pos): """Checks if pos conforms to the planar embedding Returns true iff the neighbors are actually oriented in the orientation specified of the embedding """ for v in embedding: nbr_vectors = [] v_pos = pos[v] for nbr in embedding[v]: new_vector = Vector(pos[nbr][0] - v_pos[0], pos[nbr][1] - v_pos[1], nbr) nbr_vectors.append(new_vector) # Sort neighbors according to their phi angle nbr_vectors.sort() for idx, nbr_vector in enumerate(nbr_vectors): cw_vector = nbr_vectors[(idx + 1) % len(nbr_vectors)] ccw_vector = nbr_vectors[idx - 1] if ( embedding[v][nbr_vector.node]["cw"] != cw_vector.node or embedding[v][nbr_vector.node]["ccw"] != ccw_vector.node ): return False if cw_vector.node != nbr_vector.node and cw_vector == nbr_vector: # Lines overlap return False if ccw_vector.node != nbr_vector.node and ccw_vector == nbr_vector: # Lines overlap return False return True