""" Algorithms for finding optimum branchings and spanning arborescences. This implementation is based on: J. Edmonds, Optimum branchings, J. Res. Natl. Bur. Standards 71B (1967), 233–240. URL: http://archive.org/details/jresv71Bn4p233 """ # TODO: Implement method from Gabow, Galil, Spence and Tarjan: # # @article{ # year={1986}, # issn={0209-9683}, # journal={Combinatorica}, # volume={6}, # number={2}, # doi={10.1007/BF02579168}, # title={Efficient algorithms for finding minimum spanning trees in # undirected and directed graphs}, # url={https://doi.org/10.1007/BF02579168}, # publisher={Springer-Verlag}, # keywords={68 B 15; 68 C 05}, # author={Gabow, Harold N. and Galil, Zvi and Spencer, Thomas and Tarjan, # Robert E.}, # pages={109-122}, # language={English} # } import string from dataclasses import dataclass, field from enum import Enum from operator import itemgetter from queue import PriorityQueue import networkx as nx from networkx.utils import py_random_state from .recognition import is_arborescence, is_branching __all__ = [ "branching_weight", "greedy_branching", "maximum_branching", "minimum_branching", "maximum_spanning_arborescence", "minimum_spanning_arborescence", "ArborescenceIterator", "Edmonds", ] KINDS = {"max", "min"} STYLES = { "branching": "branching", "arborescence": "arborescence", "spanning arborescence": "arborescence", } INF = float("inf") @py_random_state(1) def random_string(L=15, seed=None): return "".join([seed.choice(string.ascii_letters) for n in range(L)]) def _min_weight(weight): return -weight def _max_weight(weight): return weight def branching_weight(G, attr="weight", default=1): """ Returns the total weight of a branching. """ return sum(edge[2].get(attr, default) for edge in G.edges(data=True)) @py_random_state(4) def greedy_branching(G, attr="weight", default=1, kind="max", seed=None): """ Returns a branching obtained through a greedy algorithm. This algorithm is wrong, and cannot give a proper optimal branching. However, we include it for pedagogical reasons, as it can be helpful to see what its outputs are. The output is a branching, and possibly, a spanning arborescence. However, it is not guaranteed to be optimal in either case. Parameters ---------- G : DiGraph The directed graph to scan. attr : str The attribute to use as weights. If None, then each edge will be treated equally with a weight of 1. default : float When `attr` is not None, then if an edge does not have that attribute, `default` specifies what value it should take. kind : str The type of optimum to search for: 'min' or 'max' greedy branching. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness`. Returns ------- B : directed graph The greedily obtained branching. """ if kind not in KINDS: raise nx.NetworkXException("Unknown value for `kind`.") if kind == "min": reverse = False else: reverse = True if attr is None: # Generate a random string the graph probably won't have. attr = random_string(seed=seed) edges = [(u, v, data.get(attr, default)) for (u, v, data) in G.edges(data=True)] # We sort by weight, but also by nodes to normalize behavior across runs. try: edges.sort(key=itemgetter(2, 0, 1), reverse=reverse) except TypeError: # This will fail in Python 3.x if the nodes are of varying types. # In that case, we use the arbitrary order. edges.sort(key=itemgetter(2), reverse=reverse) # The branching begins with a forest of no edges. B = nx.DiGraph() B.add_nodes_from(G) # Now we add edges greedily so long we maintain the branching. uf = nx.utils.UnionFind() for i, (u, v, w) in enumerate(edges): if uf[u] == uf[v]: # Adding this edge would form a directed cycle. continue elif B.in_degree(v) == 1: # The edge would increase the degree to be greater than one. continue else: # If attr was None, then don't insert weights... data = {} if attr is not None: data[attr] = w B.add_edge(u, v, **data) uf.union(u, v) return B class MultiDiGraph_EdgeKey(nx.MultiDiGraph): """ MultiDiGraph which assigns unique keys to every edge. Adds a dictionary edge_index which maps edge keys to (u, v, data) tuples. This is not a complete implementation. For Edmonds algorithm, we only use add_node and add_edge, so that is all that is implemented here. During additions, any specified keys are ignored---this means that you also cannot update edge attributes through add_node and add_edge. Why do we need this? Edmonds algorithm requires that we track edges, even as we change the head and tail of an edge, and even changing the weight of edges. We must reliably track edges across graph mutations. """ def __init__(self, incoming_graph_data=None, **attr): cls = super() cls.__init__(incoming_graph_data=incoming_graph_data, **attr) self._cls = cls self.edge_index = {} def remove_node(self, n): keys = set() for keydict in self.pred[n].values(): keys.update(keydict) for keydict in self.succ[n].values(): keys.update(keydict) for key in keys: del self.edge_index[key] self._cls.remove_node(n) def remove_nodes_from(self, nbunch): for n in nbunch: self.remove_node(n) def add_edge(self, u_for_edge, v_for_edge, key_for_edge, **attr): """ Key is now required. """ u, v, key = u_for_edge, v_for_edge, key_for_edge if key in self.edge_index: uu, vv, _ = self.edge_index[key] if (u != uu) or (v != vv): raise Exception(f"Key {key!r} is already in use.") self._cls.add_edge(u, v, key, **attr) self.edge_index[key] = (u, v, self.succ[u][v][key]) def add_edges_from(self, ebunch_to_add, **attr): for u, v, k, d in ebunch_to_add: self.add_edge(u, v, k, **d) def remove_edge_with_key(self, key): try: u, v, _ = self.edge_index[key] except KeyError as err: raise KeyError(f"Invalid edge key {key!r}") from err else: del self.edge_index[key] self._cls.remove_edge(u, v, key) def remove_edges_from(self, ebunch): raise NotImplementedError def get_path(G, u, v): """ Returns the edge keys of the unique path between u and v. This is not a generic function. G must be a branching and an instance of MultiDiGraph_EdgeKey. """ nodes = nx.shortest_path(G, u, v) # We are guaranteed that there is only one edge connected every node # in the shortest path. def first_key(i, vv): # Needed for 2.x/3.x compatibilitity keys = G[nodes[i]][vv].keys() # Normalize behavior keys = list(keys) return keys[0] edges = [first_key(i, vv) for i, vv in enumerate(nodes[1:])] return nodes, edges class Edmonds: """ Edmonds algorithm [1]_ for finding optimal branchings and spanning arborescences. This algorithm can find both minimum and maximum spanning arborescences and branchings. Notes ----- While this algorithm can find a minimum branching, since it isn't required to be spanning, the minimum branching is always from the set of negative weight edges which is most likely the empty set for most graphs. References ---------- .. [1] J. Edmonds, Optimum Branchings, Journal of Research of the National Bureau of Standards, 1967, Vol. 71B, p.233-240, https://archive.org/details/jresv71Bn4p233 """ def __init__(self, G, seed=None): self.G_original = G # Need to fix this. We need the whole tree. self.store = True # The final answer. self.edges = [] # Since we will be creating graphs with new nodes, we need to make # sure that our node names do not conflict with the real node names. self.template = random_string(seed=seed) + "_{0}" def _init(self, attr, default, kind, style, preserve_attrs, seed, partition): if kind not in KINDS: raise nx.NetworkXException("Unknown value for `kind`.") # Store inputs. self.attr = attr self.default = default self.kind = kind self.style = style # Determine how we are going to transform the weights. if kind == "min": self.trans = trans = _min_weight else: self.trans = trans = _max_weight if attr is None: # Generate a random attr the graph probably won't have. attr = random_string(seed=seed) # This is the actual attribute used by the algorithm. self._attr = attr # This attribute is used to store whether a particular edge is still # a candidate. We generate a random attr to remove clashes with # preserved edges self.candidate_attr = "candidate_" + random_string(seed=seed) # The object we manipulate at each step is a multidigraph. self.G = G = MultiDiGraph_EdgeKey() for key, (u, v, data) in enumerate(self.G_original.edges(data=True)): d = {attr: trans(data.get(attr, default))} if data.get(partition) is not None: d[partition] = data.get(partition) if preserve_attrs: for (d_k, d_v) in data.items(): if d_k != attr: d[d_k] = d_v G.add_edge(u, v, key, **d) self.level = 0 # These are the "buckets" from the paper. # # As in the paper, G^i are modified versions of the original graph. # D^i and E^i are nodes and edges of the maximal edges that are # consistent with G^i. These are dashed edges in figures A-F of the # paper. In this implementation, we store D^i and E^i together as a # graph B^i. So we will have strictly more B^i than the paper does. self.B = MultiDiGraph_EdgeKey() self.B.edge_index = {} self.graphs = [] # G^i self.branchings = [] # B^i self.uf = nx.utils.UnionFind() # A list of lists of edge indexes. Each list is a circuit for graph G^i. # Note the edge list will not, in general, be a circuit in graph G^0. self.circuits = [] # Stores the index of the minimum edge in the circuit found in G^i # and B^i. The ordering of the edges seems to preserve the weight # ordering from G^0. So even if the circuit does not form a circuit # in G^0, it is still true that the minimum edge of the circuit in # G^i is still the minimum edge in circuit G^0 (despite their weights # being different). self.minedge_circuit = [] def find_optimum( self, attr="weight", default=1, kind="max", style="branching", preserve_attrs=False, partition=None, seed=None, ): """ Returns a branching from G. Parameters ---------- attr : str The edge attribute used to in determining optimality. default : float The value of the edge attribute used if an edge does not have the attribute `attr`. kind : {'min', 'max'} The type of optimum to search for, either 'min' or 'max'. style : {'branching', 'arborescence'} If 'branching', then an optimal branching is found. If `style` is 'arborescence', then a branching is found, such that if the branching is also an arborescence, then the branching is an optimal spanning arborescences. A given graph G need not have an optimal spanning arborescence. preserve_attrs : bool If True, preserve the other edge attributes of the original graph (that are not the one passed to `attr`) partition : str The edge attribute holding edge partition data. Used in the spanning arborescence iterator. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness`. Returns ------- H : (multi)digraph The branching. """ self._init(attr, default, kind, style, preserve_attrs, seed, partition) uf = self.uf # This enormous while loop could use some refactoring... G, B = self.G, self.B D = set() nodes = iter(list(G.nodes())) attr = self._attr G_pred = G.pred def desired_edge(v): """ Find the edge directed toward v with maximal weight. If an edge partition exists in this graph, return the included edge if it exists and no not return any excluded edges. There can only be one included edge for each vertex otherwise the edge partition is empty. """ edge = None weight = -INF for u, _, key, data in G.in_edges(v, data=True, keys=True): # Skip excluded edges if data.get(partition) == nx.EdgePartition.EXCLUDED: continue new_weight = data[attr] # Return the included edge if data.get(partition) == nx.EdgePartition.INCLUDED: weight = new_weight edge = (u, v, key, new_weight, data) return edge, weight # Find the best open edge if new_weight > weight: weight = new_weight edge = (u, v, key, new_weight, data) return edge, weight while True: # (I1): Choose a node v in G^i not in D^i. try: v = next(nodes) except StopIteration: # If there are no more new nodes to consider, then we *should* # meet the break condition (b) from the paper: # (b) every node of G^i is in D^i and E^i is a branching # Construction guarantees that it's a branching. assert len(G) == len(B) if len(B): assert is_branching(B) if self.store: self.graphs.append(G.copy()) self.branchings.append(B.copy()) # Add these to keep the lengths equal. Element i is the # circuit at level i that was merged to form branching i+1. # There is no circuit for the last level. self.circuits.append([]) self.minedge_circuit.append(None) break else: if v in D: # print("v in D", v) continue # Put v into bucket D^i. # print(f"Adding node {v}") D.add(v) B.add_node(v) edge, weight = desired_edge(v) # print(f"Max edge is {edge!r}") if edge is None: # If there is no edge, continue with a new node at (I1). continue else: # Determine if adding the edge to E^i would mean its no longer # a branching. Presently, v has indegree 0 in B---it is a root. u = edge[0] if uf[u] == uf[v]: # Then adding the edge will create a circuit. Then B # contains a unique path P from v to u. So condition (a) # from the paper does hold. We need to store the circuit # for future reference. Q_nodes, Q_edges = get_path(B, v, u) Q_edges.append(edge[2]) # Edge key else: # Then B with the edge is still a branching and condition # (a) from the paper does not hold. Q_nodes, Q_edges = None, None # Conditions for adding the edge. # If weight < 0, then it cannot help in finding a maximum branching. if self.style == "branching" and weight <= 0: acceptable = False else: acceptable = True # print(f"Edge is acceptable: {acceptable}") if acceptable: dd = {attr: weight} if edge[4].get(partition) is not None: dd[partition] = edge[4].get(partition) B.add_edge(u, v, edge[2], **dd) G[u][v][edge[2]][self.candidate_attr] = True uf.union(u, v) if Q_edges is not None: # print("Edge introduced a simple cycle:") # print(Q_nodes, Q_edges) # Move to method # Previous meaning of u and v is no longer important. # Apply (I2). # Get the edge in the cycle with the minimum weight. # Also, save the incoming weights for each node. minweight = INF minedge = None Q_incoming_weight = {} for edge_key in Q_edges: u, v, data = B.edge_index[edge_key] # We cannot remove an included edges, even if it is # the minimum edge in the circuit w = data[attr] Q_incoming_weight[v] = w if data.get(partition) == nx.EdgePartition.INCLUDED: continue if w < minweight: minweight = w minedge = edge_key self.circuits.append(Q_edges) self.minedge_circuit.append(minedge) if self.store: self.graphs.append(G.copy()) # Always need the branching with circuits. self.branchings.append(B.copy()) # Now we mutate it. new_node = self.template.format(self.level) # print(minweight, minedge, Q_incoming_weight) G.add_node(new_node) new_edges = [] for u, v, key, data in G.edges(data=True, keys=True): if u in Q_incoming_weight: if v in Q_incoming_weight: # Circuit edge, do nothing for now. # Eventually delete it. continue else: # Outgoing edge. Make it from new node dd = data.copy() new_edges.append((new_node, v, key, dd)) else: if v in Q_incoming_weight: # Incoming edge. Change its weight w = data[attr] w += minweight - Q_incoming_weight[v] dd = data.copy() dd[attr] = w new_edges.append((u, new_node, key, dd)) else: # Outside edge. No modification necessary. continue G.remove_nodes_from(Q_nodes) B.remove_nodes_from(Q_nodes) D.difference_update(set(Q_nodes)) for u, v, key, data in new_edges: G.add_edge(u, v, key, **data) if self.candidate_attr in data: del data[self.candidate_attr] B.add_edge(u, v, key, **data) uf.union(u, v) nodes = iter(list(G.nodes())) self.level += 1 # (I3) Branch construction. # print(self.level) H = self.G_original.__class__() def is_root(G, u, edgekeys): """ Returns True if `u` is a root node in G. Node `u` will be a root node if its in-degree, restricted to the specified edges, is equal to 0. """ if u not in G: # print(G.nodes(), u) raise Exception(f"{u!r} not in G") for v in G.pred[u]: for edgekey in G.pred[u][v]: if edgekey in edgekeys: return False, edgekey else: return True, None # Start with the branching edges in the last level. edges = set(self.branchings[self.level].edge_index) while self.level > 0: self.level -= 1 # The current level is i, and we start counting from 0. # We need the node at level i+1 that results from merging a circuit # at level i. randomname_0 is the first merged node and this # happens at level 1. That is, randomname_0 is a node at level 1 # that results from merging a circuit at level 0. merged_node = self.template.format(self.level) # The circuit at level i that was merged as a node the graph # at level i+1. circuit = self.circuits[self.level] # print # print(merged_node, self.level, circuit) # print("before", edges) # Note, we ask if it is a root in the full graph, not the branching. # The branching alone doesn't have all the edges. isroot, edgekey = is_root(self.graphs[self.level + 1], merged_node, edges) edges.update(circuit) if isroot: minedge = self.minedge_circuit[self.level] if minedge is None: raise Exception # Remove the edge in the cycle with minimum weight. edges.remove(minedge) else: # We have identified an edge at next higher level that # transitions into the merged node at the level. That edge # transitions to some corresponding node at the current level. # We want to remove an edge from the cycle that transitions # into the corresponding node. # print("edgekey is: ", edgekey) # print("circuit is: ", circuit) # The branching at level i G = self.graphs[self.level] # print(G.edge_index) target = G.edge_index[edgekey][1] for edgekey in circuit: u, v, data = G.edge_index[edgekey] if v == target: break else: raise Exception("Couldn't find edge incoming to merged node.") # print(f"not a root. removing {edgekey}") edges.remove(edgekey) self.edges = edges H.add_nodes_from(self.G_original) for edgekey in edges: u, v, d = self.graphs[0].edge_index[edgekey] dd = {self.attr: self.trans(d[self.attr])} # Optionally, preserve the other edge attributes of the original # graph if preserve_attrs: for (key, value) in d.items(): if key not in [self.attr, self.candidate_attr]: dd[key] = value # TODO: make this preserve the key. H.add_edge(u, v, **dd) return H def maximum_branching( G, attr="weight", default=1, preserve_attrs=False, partition=None ): ed = Edmonds(G) B = ed.find_optimum( attr, default, kind="max", style="branching", preserve_attrs=preserve_attrs, partition=partition, ) return B def minimum_branching( G, attr="weight", default=1, preserve_attrs=False, partition=None ): ed = Edmonds(G) B = ed.find_optimum( attr, default, kind="min", style="branching", preserve_attrs=preserve_attrs, partition=partition, ) return B def maximum_spanning_arborescence( G, attr="weight", default=1, preserve_attrs=False, partition=None ): ed = Edmonds(G) B = ed.find_optimum( attr, default, kind="max", style="arborescence", preserve_attrs=preserve_attrs, partition=partition, ) if not is_arborescence(B): msg = "No maximum spanning arborescence in G." raise nx.exception.NetworkXException(msg) return B def minimum_spanning_arborescence( G, attr="weight", default=1, preserve_attrs=False, partition=None ): ed = Edmonds(G) B = ed.find_optimum( attr, default, kind="min", style="arborescence", preserve_attrs=preserve_attrs, partition=partition, ) if not is_arborescence(B): msg = "No minimum spanning arborescence in G." raise nx.exception.NetworkXException(msg) return B docstring_branching = """ Returns a {kind} {style} from G. Parameters ---------- G : (multi)digraph-like The graph to be searched. attr : str The edge attribute used to in determining optimality. default : float The value of the edge attribute used if an edge does not have the attribute `attr`. preserve_attrs : bool If True, preserve the other attributes of the original graph (that are not passed to `attr`) partition : str The key for the edge attribute containing the partition data on the graph. Edges can be included, excluded or open using the `EdgePartition` enum. Returns ------- B : (multi)digraph-like A {kind} {style}. """ docstring_arborescence = ( docstring_branching + """ Raises ------ NetworkXException If the graph does not contain a {kind} {style}. """ ) maximum_branching.__doc__ = docstring_branching.format( kind="maximum", style="branching" ) minimum_branching.__doc__ = docstring_branching.format( kind="minimum", style="branching" ) maximum_spanning_arborescence.__doc__ = docstring_arborescence.format( kind="maximum", style="spanning arborescence" ) minimum_spanning_arborescence.__doc__ = docstring_arborescence.format( kind="minimum", style="spanning arborescence" ) class ArborescenceIterator: """ Iterate over all spanning arborescences of a graph in either increasing or decreasing cost. Notes ----- This iterator uses the partition scheme from [1]_ (included edges, excluded edges and open edges). It generates minimum spanning arborescences using a modified Edmonds' Algorithm which respects the partition of edges. For arborescences with the same weight, ties are broken arbitrarily. References ---------- .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning trees in order of increasing cost, Pesquisa Operacional, 2005-08, Vol. 25 (2), p. 219-229, https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en """ @dataclass(order=True) class Partition: """ This dataclass represents a partition and stores a dict with the edge data and the weight of the minimum spanning arborescence of the partition dict. """ mst_weight: float partition_dict: dict = field(compare=False) def __copy__(self): return ArborescenceIterator.Partition( self.mst_weight, self.partition_dict.copy() ) def __init__(self, G, weight="weight", minimum=True, init_partition=None): """ Initialize the iterator Parameters ---------- G : nx.DiGraph The directed graph which we need to iterate trees over weight : String, default = "weight" The edge attribute used to store the weight of the edge minimum : bool, default = True Return the trees in increasing order while true and decreasing order while false. init_partition : tuple, default = None In the case that certain edges have to be included or excluded from the arborescences, `init_partition` should be in the form `(included_edges, excluded_edges)` where each edges is a `(u, v)`-tuple inside an iterable such as a list or set. """ self.G = G.copy() self.weight = weight self.minimum = minimum self.method = ( minimum_spanning_arborescence if minimum else maximum_spanning_arborescence ) # Randomly create a key for an edge attribute to hold the partition data self.partition_key = ( "ArborescenceIterators super secret partition attribute name" ) if init_partition is not None: partition_dict = {} for e in init_partition[0]: partition_dict[e] = nx.EdgePartition.INCLUDED for e in init_partition[1]: partition_dict[e] = nx.EdgePartition.EXCLUDED self.init_partition = ArborescenceIterator.Partition(0, partition_dict) else: self.init_partition = None def __iter__(self): """ Returns ------- ArborescenceIterator The iterator object for this graph """ self.partition_queue = PriorityQueue() self._clear_partition(self.G) # Write the initial partition if it exists. if self.init_partition is not None: self._write_partition(self.init_partition) mst_weight = self.method( self.G, self.weight, partition=self.partition_key, preserve_attrs=True, ).size(weight=self.weight) self.partition_queue.put( self.Partition( mst_weight if self.minimum else -mst_weight, dict() if self.init_partition is None else self.init_partition.partition_dict, ) ) return self def __next__(self): """ Returns ------- (multi)Graph The spanning tree of next greatest weight, which ties broken arbitrarily. """ if self.partition_queue.empty(): del self.G, self.partition_queue raise StopIteration partition = self.partition_queue.get() self._write_partition(partition) next_arborescence = self.method( self.G, self.weight, partition=self.partition_key, preserve_attrs=True, ) self._partition(partition, next_arborescence) self._clear_partition(next_arborescence) return next_arborescence def _partition(self, partition, partition_arborescence): """ Create new partitions based of the minimum spanning tree of the current minimum partition. Parameters ---------- partition : Partition The Partition instance used to generate the current minimum spanning tree. partition_arborescence : nx.Graph The minimum spanning arborescence of the input partition. """ # create two new partitions with the data from the input partition dict p1 = self.Partition(0, partition.partition_dict.copy()) p2 = self.Partition(0, partition.partition_dict.copy()) for e in partition_arborescence.edges: # determine if the edge was open or included if e not in partition.partition_dict: # This is an open edge p1.partition_dict[e] = nx.EdgePartition.EXCLUDED p2.partition_dict[e] = nx.EdgePartition.INCLUDED self._write_partition(p1) try: p1_mst = self.method( self.G, self.weight, partition=self.partition_key, preserve_attrs=True, ) p1_mst_weight = p1_mst.size(weight=self.weight) p1.mst_weight = p1_mst_weight if self.minimum else -p1_mst_weight self.partition_queue.put(p1.__copy__()) except nx.NetworkXException: pass p1.partition_dict = p2.partition_dict.copy() def _write_partition(self, partition): """ Writes the desired partition into the graph to calculate the minimum spanning tree. Also, if one incoming edge is included, mark all others as excluded so that if that vertex is merged during Edmonds' algorithm we cannot still pick another of that vertex's included edges. Parameters ---------- partition : Partition A Partition dataclass describing a partition on the edges of the graph. """ for u, v, d in self.G.edges(data=True): if (u, v) in partition.partition_dict: d[self.partition_key] = partition.partition_dict[(u, v)] else: d[self.partition_key] = nx.EdgePartition.OPEN for n in self.G: included_count = 0 excluded_count = 0 for u, v, d in self.G.in_edges(nbunch=n, data=True): if d.get(self.partition_key) == nx.EdgePartition.INCLUDED: included_count += 1 elif d.get(self.partition_key) == nx.EdgePartition.EXCLUDED: excluded_count += 1 # Check that if there is an included edges, all other incoming ones # are excluded. If not fix it! if included_count == 1 and excluded_count != self.G.in_degree(n) - 1: for u, v, d in self.G.in_edges(nbunch=n, data=True): if d.get(self.partition_key) != nx.EdgePartition.INCLUDED: d[self.partition_key] = nx.EdgePartition.EXCLUDED def _clear_partition(self, G): """ Removes partition data from the graph """ for u, v, d in G.edges(data=True): if self.partition_key in d: del d[self.partition_key]