""" Algorithms for calculating min/max spanning trees/forests. """ from dataclasses import dataclass, field from enum import Enum from heapq import heappop, heappush from operator import itemgetter from itertools import count from math import isnan from queue import PriorityQueue import networkx as nx from networkx.utils import UnionFind, not_implemented_for __all__ = [ "minimum_spanning_edges", "maximum_spanning_edges", "minimum_spanning_tree", "maximum_spanning_tree", "partition_spanning_tree", "EdgePartition", "SpanningTreeIterator", ] class EdgePartition(Enum): """ An enum to store the state of an edge partition. The enum is written to the edges of a graph before being pasted to `kruskal_mst_edges`. Options are: - EdgePartition.OPEN - EdgePartition.INCLUDED - EdgePartition.EXCLUDED """ OPEN = 0 INCLUDED = 1 EXCLUDED = 2 @not_implemented_for("multigraph") def boruvka_mst_edges( G, minimum=True, weight="weight", keys=False, data=True, ignore_nan=False ): """Iterate over edges of a Borůvka's algorithm min/max spanning tree. Parameters ---------- G : NetworkX Graph The edges of `G` must have distinct weights, otherwise the edges may not form a tree. minimum : bool (default: True) Find the minimum (True) or maximum (False) spanning tree. weight : string (default: 'weight') The name of the edge attribute holding the edge weights. keys : bool (default: True) This argument is ignored since this function is not implemented for multigraphs; it exists only for consistency with the other minimum spanning tree functions. data : bool (default: True) Flag for whether to yield edge attribute dicts. If True, yield edges `(u, v, d)`, where `d` is the attribute dict. If False, yield edges `(u, v)`. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. """ # Initialize a forest, assuming initially that it is the discrete # partition of the nodes of the graph. forest = UnionFind(G) def best_edge(component): """Returns the optimum (minimum or maximum) edge on the edge boundary of the given set of nodes. A return value of ``None`` indicates an empty boundary. """ sign = 1 if minimum else -1 minwt = float("inf") boundary = None for e in nx.edge_boundary(G, component, data=True): wt = e[-1].get(weight, 1) * sign if isnan(wt): if ignore_nan: continue msg = f"NaN found as an edge weight. Edge {e}" raise ValueError(msg) if wt < minwt: minwt = wt boundary = e return boundary # Determine the optimum edge in the edge boundary of each component # in the forest. best_edges = (best_edge(component) for component in forest.to_sets()) best_edges = [edge for edge in best_edges if edge is not None] # If each entry was ``None``, that means the graph was disconnected, # so we are done generating the forest. while best_edges: # Determine the optimum edge in the edge boundary of each # component in the forest. # # This must be a sequence, not an iterator. In this list, the # same edge may appear twice, in different orientations (but # that's okay, since a union operation will be called on the # endpoints the first time it is seen, but not the second time). # # Any ``None`` indicates that the edge boundary for that # component was empty, so that part of the forest has been # completed. # # TODO This can be parallelized, both in the outer loop over # each component in the forest and in the computation of the # minimum. (Same goes for the identical lines outside the loop.) best_edges = (best_edge(component) for component in forest.to_sets()) best_edges = [edge for edge in best_edges if edge is not None] # Join trees in the forest using the best edges, and yield that # edge, since it is part of the spanning tree. # # TODO This loop can be parallelized, to an extent (the union # operation must be atomic). for u, v, d in best_edges: if forest[u] != forest[v]: if data: yield u, v, d else: yield u, v forest.union(u, v) def kruskal_mst_edges( G, minimum, weight="weight", keys=True, data=True, ignore_nan=False, partition=None ): """ Iterate over edge of a Kruskal's algorithm min/max spanning tree. Parameters ---------- G : NetworkX Graph The graph holding the tree of interest. minimum : bool (default: True) Find the minimum (True) or maximum (False) spanning tree. weight : string (default: 'weight') The name of the edge attribute holding the edge weights. keys : bool (default: True) If `G` is a multigraph, `keys` controls whether edge keys ar yielded. Otherwise `keys` is ignored. data : bool (default: True) Flag for whether to yield edge attribute dicts. If True, yield edges `(u, v, d)`, where `d` is the attribute dict. If False, yield edges `(u, v)`. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. partition : string (default: None) The name of the edge attribute holding the partition data, if it exists. Partition data is written to the edges using the `EdgePartition` enum. If a partition exists, all included edges and none of the excluded edges will appear in the final tree. Open edges may or may not be used. Yields ------ edge tuple The edges as discovered by Kruskal's method. Each edge can take the following forms: `(u, v)`, `(u, v, d)` or `(u, v, k, d)` depending on the `key` and `data` parameters """ subtrees = UnionFind() if G.is_multigraph(): edges = G.edges(keys=True, data=True) else: edges = G.edges(data=True) """ Sort the edges of the graph with respect to the partition data. Edges are returned in the following order: * Included edges * Open edges from smallest to largest weight * Excluded edges """ included_edges = [] open_edges = [] for e in edges: d = e[-1] wt = d.get(weight, 1) if isnan(wt): if ignore_nan: continue raise ValueError(f"NaN found as an edge weight. Edge {e}") edge = (wt,) + e if d.get(partition) == EdgePartition.INCLUDED: included_edges.append(edge) elif d.get(partition) == EdgePartition.EXCLUDED: continue else: open_edges.append(edge) if minimum: sorted_open_edges = sorted(open_edges, key=itemgetter(0)) else: sorted_open_edges = sorted(open_edges, key=itemgetter(0), reverse=True) # Condense the lists into one included_edges.extend(sorted_open_edges) sorted_edges = included_edges del open_edges, sorted_open_edges, included_edges # Multigraphs need to handle edge keys in addition to edge data. if G.is_multigraph(): for wt, u, v, k, d in sorted_edges: if subtrees[u] != subtrees[v]: if keys: if data: yield u, v, k, d else: yield u, v, k else: if data: yield u, v, d else: yield u, v subtrees.union(u, v) else: for wt, u, v, d in sorted_edges: if subtrees[u] != subtrees[v]: if data: yield u, v, d else: yield u, v subtrees.union(u, v) def prim_mst_edges(G, minimum, weight="weight", keys=True, data=True, ignore_nan=False): """Iterate over edges of Prim's algorithm min/max spanning tree. Parameters ---------- G : NetworkX Graph The graph holding the tree of interest. minimum : bool (default: True) Find the minimum (True) or maximum (False) spanning tree. weight : string (default: 'weight') The name of the edge attribute holding the edge weights. keys : bool (default: True) If `G` is a multigraph, `keys` controls whether edge keys ar yielded. Otherwise `keys` is ignored. data : bool (default: True) Flag for whether to yield edge attribute dicts. If True, yield edges `(u, v, d)`, where `d` is the attribute dict. If False, yield edges `(u, v)`. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. """ is_multigraph = G.is_multigraph() push = heappush pop = heappop nodes = set(G) c = count() sign = 1 if minimum else -1 while nodes: u = nodes.pop() frontier = [] visited = {u} if is_multigraph: for v, keydict in G.adj[u].items(): for k, d in keydict.items(): wt = d.get(weight, 1) * sign if isnan(wt): if ignore_nan: continue msg = f"NaN found as an edge weight. Edge {(u, v, k, d)}" raise ValueError(msg) push(frontier, (wt, next(c), u, v, k, d)) else: for v, d in G.adj[u].items(): wt = d.get(weight, 1) * sign if isnan(wt): if ignore_nan: continue msg = f"NaN found as an edge weight. Edge {(u, v, d)}" raise ValueError(msg) push(frontier, (wt, next(c), u, v, d)) while frontier: if is_multigraph: W, _, u, v, k, d = pop(frontier) else: W, _, u, v, d = pop(frontier) if v in visited or v not in nodes: continue # Multigraphs need to handle edge keys in addition to edge data. if is_multigraph and keys: if data: yield u, v, k, d else: yield u, v, k else: if data: yield u, v, d else: yield u, v # update frontier visited.add(v) nodes.discard(v) if is_multigraph: for w, keydict in G.adj[v].items(): if w in visited: continue for k2, d2 in keydict.items(): new_weight = d2.get(weight, 1) * sign push(frontier, (new_weight, next(c), v, w, k2, d2)) else: for w, d2 in G.adj[v].items(): if w in visited: continue new_weight = d2.get(weight, 1) * sign push(frontier, (new_weight, next(c), v, w, d2)) ALGORITHMS = { "boruvka": boruvka_mst_edges, "borůvka": boruvka_mst_edges, "kruskal": kruskal_mst_edges, "prim": prim_mst_edges, } @not_implemented_for("directed") def minimum_spanning_edges( G, algorithm="kruskal", weight="weight", keys=True, data=True, ignore_nan=False ): """Generate edges in a minimum spanning forest of an undirected weighted graph. A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights. A spanning forest is a union of the spanning trees for each connected component of the graph. Parameters ---------- G : undirected Graph An undirected graph. If `G` is connected, then the algorithm finds a spanning tree. Otherwise, a spanning forest is found. algorithm : string The algorithm to use when finding a minimum spanning tree. Valid choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. weight : string Edge data key to use for weight (default 'weight'). keys : bool Whether to yield edge key in multigraphs in addition to the edge. If `G` is not a multigraph, this is ignored. data : bool, optional If True yield the edge data along with the edge. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. Returns ------- edges : iterator An iterator over edges in a maximum spanning tree of `G`. Edges connecting nodes `u` and `v` are represented as tuples: `(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)` If `G` is a multigraph, `keys` indicates whether the edge key `k` will be reported in the third position in the edge tuple. `data` indicates whether the edge datadict `d` will appear at the end of the edge tuple. If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True or `(u, v)` if `data` is False. Examples -------- >>> from networkx.algorithms import tree Find minimum spanning edges by Kruskal's algorithm >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> mst = tree.minimum_spanning_edges(G, algorithm="kruskal", data=False) >>> edgelist = list(mst) >>> sorted(sorted(e) for e in edgelist) [[0, 1], [1, 2], [2, 3]] Find minimum spanning edges by Prim's algorithm >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> mst = tree.minimum_spanning_edges(G, algorithm="prim", data=False) >>> edgelist = list(mst) >>> sorted(sorted(e) for e in edgelist) [[0, 1], [1, 2], [2, 3]] Notes ----- For Borůvka's algorithm, each edge must have a weight attribute, and each edge weight must be distinct. For the other algorithms, if the graph edges do not have a weight attribute a default weight of 1 will be used. Modified code from David Eppstein, April 2006 http://www.ics.uci.edu/~eppstein/PADS/ """ try: algo = ALGORITHMS[algorithm] except KeyError as err: msg = f"{algorithm} is not a valid choice for an algorithm." raise ValueError(msg) from err return algo( G, minimum=True, weight=weight, keys=keys, data=data, ignore_nan=ignore_nan ) @not_implemented_for("directed") def maximum_spanning_edges( G, algorithm="kruskal", weight="weight", keys=True, data=True, ignore_nan=False ): """Generate edges in a maximum spanning forest of an undirected weighted graph. A maximum spanning tree is a subgraph of the graph (a tree) with the maximum possible sum of edge weights. A spanning forest is a union of the spanning trees for each connected component of the graph. Parameters ---------- G : undirected Graph An undirected graph. If `G` is connected, then the algorithm finds a spanning tree. Otherwise, a spanning forest is found. algorithm : string The algorithm to use when finding a maximum spanning tree. Valid choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. weight : string Edge data key to use for weight (default 'weight'). keys : bool Whether to yield edge key in multigraphs in addition to the edge. If `G` is not a multigraph, this is ignored. data : bool, optional If True yield the edge data along with the edge. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. Returns ------- edges : iterator An iterator over edges in a maximum spanning tree of `G`. Edges connecting nodes `u` and `v` are represented as tuples: `(u, v, k, d)` or `(u, v, k)` or `(u, v, d)` or `(u, v)` If `G` is a multigraph, `keys` indicates whether the edge key `k` will be reported in the third position in the edge tuple. `data` indicates whether the edge datadict `d` will appear at the end of the edge tuple. If `G` is not a multigraph, the tuples are `(u, v, d)` if `data` is True or `(u, v)` if `data` is False. Examples -------- >>> from networkx.algorithms import tree Find maximum spanning edges by Kruskal's algorithm >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> mst = tree.maximum_spanning_edges(G, algorithm="kruskal", data=False) >>> edgelist = list(mst) >>> sorted(sorted(e) for e in edgelist) [[0, 1], [0, 3], [1, 2]] Find maximum spanning edges by Prim's algorithm >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) # assign weight 2 to edge 0-3 >>> mst = tree.maximum_spanning_edges(G, algorithm="prim", data=False) >>> edgelist = list(mst) >>> sorted(sorted(e) for e in edgelist) [[0, 1], [0, 3], [2, 3]] Notes ----- For Borůvka's algorithm, each edge must have a weight attribute, and each edge weight must be distinct. For the other algorithms, if the graph edges do not have a weight attribute a default weight of 1 will be used. Modified code from David Eppstein, April 2006 http://www.ics.uci.edu/~eppstein/PADS/ """ try: algo = ALGORITHMS[algorithm] except KeyError as err: msg = f"{algorithm} is not a valid choice for an algorithm." raise ValueError(msg) from err return algo( G, minimum=False, weight=weight, keys=keys, data=data, ignore_nan=ignore_nan ) def minimum_spanning_tree(G, weight="weight", algorithm="kruskal", ignore_nan=False): """Returns a minimum spanning tree or forest on an undirected graph `G`. Parameters ---------- G : undirected graph An undirected graph. If `G` is connected, then the algorithm finds a spanning tree. Otherwise, a spanning forest is found. weight : str Data key to use for edge weights. algorithm : string The algorithm to use when finding a minimum spanning tree. Valid choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. Returns ------- G : NetworkX Graph A minimum spanning tree or forest. Examples -------- >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> T = nx.minimum_spanning_tree(G) >>> sorted(T.edges(data=True)) [(0, 1, {}), (1, 2, {}), (2, 3, {})] Notes ----- For Borůvka's algorithm, each edge must have a weight attribute, and each edge weight must be distinct. For the other algorithms, if the graph edges do not have a weight attribute a default weight of 1 will be used. There may be more than one tree with the same minimum or maximum weight. See :mod:`networkx.tree.recognition` for more detailed definitions. Isolated nodes with self-loops are in the tree as edgeless isolated nodes. """ edges = minimum_spanning_edges( G, algorithm, weight, keys=True, data=True, ignore_nan=ignore_nan ) T = G.__class__() # Same graph class as G T.graph.update(G.graph) T.add_nodes_from(G.nodes.items()) T.add_edges_from(edges) return T def partition_spanning_tree( G, minimum=True, weight="weight", partition="partition", ignore_nan=False ): """ Find a spanning tree while respecting a partition of edges. Edges can be flagged as either `INLCUDED` which are required to be in the returned tree, `EXCLUDED`, which cannot be in the returned tree and `OPEN`. This is used in the SpanningTreeIterator to create new partitions following the algorithm of Sörensen and Janssens [1]_. Parameters ---------- G : undirected graph An undirected graph. minimum : bool (default: True) Determines whether the returned tree is the minimum spanning tree of the partition of the maximum one. weight : str Data key to use for edge weights. partition : str The key for the edge attribute containing the partition data on the graph. Edges can be included, excluded or open using the `EdgePartition` enum. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. Returns ------- G : NetworkX Graph A minimum spanning tree using all of the included edges in the graph and none of the excluded edges. References ---------- .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning trees in order of increasing cost, Pesquisa Operacional, 2005-08, Vol. 25 (2), p. 219-229, https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en """ edges = kruskal_mst_edges( G, minimum, weight, keys=True, data=True, ignore_nan=ignore_nan, partition=partition, ) T = G.__class__() # Same graph class as G T.graph.update(G.graph) T.add_nodes_from(G.nodes.items()) T.add_edges_from(edges) return T def maximum_spanning_tree(G, weight="weight", algorithm="kruskal", ignore_nan=False): """Returns a maximum spanning tree or forest on an undirected graph `G`. Parameters ---------- G : undirected graph An undirected graph. If `G` is connected, then the algorithm finds a spanning tree. Otherwise, a spanning forest is found. weight : str Data key to use for edge weights. algorithm : string The algorithm to use when finding a maximum spanning tree. Valid choices are 'kruskal', 'prim', or 'boruvka'. The default is 'kruskal'. ignore_nan : bool (default: False) If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. Returns ------- G : NetworkX Graph A maximum spanning tree or forest. Examples -------- >>> G = nx.cycle_graph(4) >>> G.add_edge(0, 3, weight=2) >>> T = nx.maximum_spanning_tree(G) >>> sorted(T.edges(data=True)) [(0, 1, {}), (0, 3, {'weight': 2}), (1, 2, {})] Notes ----- For Borůvka's algorithm, each edge must have a weight attribute, and each edge weight must be distinct. For the other algorithms, if the graph edges do not have a weight attribute a default weight of 1 will be used. There may be more than one tree with the same minimum or maximum weight. See :mod:`networkx.tree.recognition` for more detailed definitions. Isolated nodes with self-loops are in the tree as edgeless isolated nodes. """ edges = maximum_spanning_edges( G, algorithm, weight, keys=True, data=True, ignore_nan=ignore_nan ) edges = list(edges) T = G.__class__() # Same graph class as G T.graph.update(G.graph) T.add_nodes_from(G.nodes.items()) T.add_edges_from(edges) return T class SpanningTreeIterator: """ Iterate over all spanning trees of a graph in either increasing or decreasing cost. Notes ----- This iterator uses the partition scheme from [1]_ (included edges, excluded edges and open edges) as well as a modified Kruskal's Algorithm to generate minimum spanning trees which respect the partition of edges. For spanning trees with the same weight, ties are broken arbitrarily. References ---------- .. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning trees in order of increasing cost, Pesquisa Operacional, 2005-08, Vol. 25 (2), p. 219-229, https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en """ @dataclass(order=True) class Partition: """ This dataclass represents a partition and stores a dict with the edge data and the weight of the minimum spanning tree of the partition dict. """ mst_weight: float partition_dict: dict = field(compare=False) def __copy__(self): return SpanningTreeIterator.Partition( self.mst_weight, self.partition_dict.copy() ) def __init__(self, G, weight="weight", minimum=True, ignore_nan=False): """ Initialize the iterator Parameters ---------- G : nx.Graph The directed graph which we need to iterate trees over weight : String, default = "weight" The edge attribute used to store the weight of the edge minimum : bool, default = True Return the trees in increasing order while true and decreasing order while false. ignore_nan : bool, default = False If a NaN is found as an edge weight normally an exception is raised. If `ignore_nan is True` then that edge is ignored instead. """ self.G = G.copy() self.weight = weight self.minimum = minimum self.ignore_nan = ignore_nan # Randomly create a key for an edge attribute to hold the partition data self.partition_key = ( "SpanningTreeIterators super secret partition attribute name" ) def __iter__(self): """ Returns ------- SpanningTreeIterator The iterator object for this graph """ self.partition_queue = PriorityQueue() self._clear_partition(self.G) mst_weight = partition_spanning_tree( self.G, self.minimum, self.weight, self.partition_key, self.ignore_nan ).size(weight=self.weight) self.partition_queue.put( self.Partition(mst_weight if self.minimum else -mst_weight, dict()) ) return self def __next__(self): """ Returns ------- (multi)Graph The spanning tree of next greatest weight, which ties broken arbitrarily. """ if self.partition_queue.empty(): del self.G, self.partition_queue raise StopIteration partition = self.partition_queue.get() self._write_partition(partition) next_tree = partition_spanning_tree( self.G, self.minimum, self.weight, self.partition_key, self.ignore_nan ) self._partition(partition, next_tree) self._clear_partition(next_tree) return next_tree def _partition(self, partition, partition_tree): """ Create new partitions based of the minimum spanning tree of the current minimum partition. Parameters ---------- partition : Partition The Partition instance used to generate the current minimum spanning tree. partition_tree : nx.Graph The minimum spanning tree of the input partition. """ # create two new partitions with the data from the input partition dict p1 = self.Partition(0, partition.partition_dict.copy()) p2 = self.Partition(0, partition.partition_dict.copy()) for e in partition_tree.edges: # determine if the edge was open or included if e not in partition.partition_dict: # This is an open edge p1.partition_dict[e] = EdgePartition.EXCLUDED p2.partition_dict[e] = EdgePartition.INCLUDED self._write_partition(p1) p1_mst = partition_spanning_tree( self.G, self.minimum, self.weight, self.partition_key, self.ignore_nan, ) p1_mst_weight = p1_mst.size(weight=self.weight) if nx.is_connected(p1_mst): p1.mst_weight = p1_mst_weight if self.minimum else -p1_mst_weight self.partition_queue.put(p1.__copy__()) p1.partition_dict = p2.partition_dict.copy() def _write_partition(self, partition): """ Writes the desired partition into the graph to calculate the minimum spanning tree. Parameters ---------- partition : Partition A Partition dataclass describing a partition on the edges of the graph. """ for u, v, d in self.G.edges(data=True): if (u, v) in partition.partition_dict: d[self.partition_key] = partition.partition_dict[(u, v)] else: d[self.partition_key] = EdgePartition.OPEN def _clear_partition(self, G): """ Removes partition data from the graph """ for u, v, d in G.edges(data=True): if self.partition_key in d: del d[self.partition_key]