"""Original NetworkX graph tests""" import pytest import networkx as nx from networkx import convert_node_labels_to_integers as cnlti from networkx.utils import nodes_equal, edges_equal class HistoricalTests: @classmethod def setup_class(cls): cls.null = nx.null_graph() cls.P1 = cnlti(nx.path_graph(1), first_label=1) cls.P3 = cnlti(nx.path_graph(3), first_label=1) cls.P10 = cnlti(nx.path_graph(10), first_label=1) cls.K1 = cnlti(nx.complete_graph(1), first_label=1) cls.K3 = cnlti(nx.complete_graph(3), first_label=1) cls.K4 = cnlti(nx.complete_graph(4), first_label=1) cls.K5 = cnlti(nx.complete_graph(5), first_label=1) cls.K10 = cnlti(nx.complete_graph(10), first_label=1) cls.G = nx.Graph def test_name(self): G = self.G(name="test") assert G.name == "test" H = self.G() assert H.name == "" # Nodes def test_add_remove_node(self): G = self.G() G.add_node("A") assert G.has_node("A") G.remove_node("A") assert not G.has_node("A") def test_nonhashable_node(self): # Test if a non-hashable object is in the Graph. A python dict will # raise a TypeError, but for a Graph class a simple False should be # returned (see Graph __contains__). If it cannot be a node then it is # not a node. G = self.G() assert not G.has_node(["A"]) assert not G.has_node({"A": 1}) def test_add_nodes_from(self): G = self.G() G.add_nodes_from(list("ABCDEFGHIJKL")) assert G.has_node("L") G.remove_nodes_from(["H", "I", "J", "K", "L"]) G.add_nodes_from([1, 2, 3, 4]) assert sorted(G.nodes(), key=str) == [ 1, 2, 3, 4, "A", "B", "C", "D", "E", "F", "G", ] # test __iter__ assert sorted(G, key=str) == [1, 2, 3, 4, "A", "B", "C", "D", "E", "F", "G"] def test_contains(self): G = self.G() G.add_node("A") assert "A" in G assert not [] in G # never raise a Key or TypeError in this test assert not {1: 1} in G def test_add_remove(self): # Test add_node and remove_node acting for various nbunch G = self.G() G.add_node("m") assert G.has_node("m") G.add_node("m") # no complaints pytest.raises(nx.NetworkXError, G.remove_node, "j") G.remove_node("m") assert list(G) == [] def test_nbunch_is_list(self): G = self.G() G.add_nodes_from(list("ABCD")) G.add_nodes_from(self.P3) # add nbunch of nodes (nbunch=Graph) assert sorted(G.nodes(), key=str) == [1, 2, 3, "A", "B", "C", "D"] G.remove_nodes_from(self.P3) # remove nbunch of nodes (nbunch=Graph) assert sorted(G.nodes(), key=str) == ["A", "B", "C", "D"] def test_nbunch_is_set(self): G = self.G() nbunch = set("ABCDEFGHIJKL") G.add_nodes_from(nbunch) assert G.has_node("L") def test_nbunch_dict(self): # nbunch is a dict with nodes as keys G = self.G() nbunch = set("ABCDEFGHIJKL") G.add_nodes_from(nbunch) nbunch = {"I": "foo", "J": 2, "K": True, "L": "spam"} G.remove_nodes_from(nbunch) assert sorted(G.nodes(), key=str), ["A", "B", "C", "D", "E", "F", "G", "H"] def test_nbunch_iterator(self): G = self.G() G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"]) n_iter = self.P3.nodes() G.add_nodes_from(n_iter) assert sorted(G.nodes(), key=str) == [ 1, 2, 3, "A", "B", "C", "D", "E", "F", "G", "H", ] n_iter = self.P3.nodes() # rebuild same iterator G.remove_nodes_from(n_iter) # remove nbunch of nodes (nbunch=iterator) assert sorted(G.nodes(), key=str) == ["A", "B", "C", "D", "E", "F", "G", "H"] def test_nbunch_graph(self): G = self.G() G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"]) nbunch = self.K3 G.add_nodes_from(nbunch) assert sorted(G.nodes(), key=str), [ 1, 2, 3, "A", "B", "C", "D", "E", "F", "G", "H", ] # Edges def test_add_edge(self): G = self.G() pytest.raises(TypeError, G.add_edge, "A") G.add_edge("A", "B") # testing add_edge() G.add_edge("A", "B") # should fail silently assert G.has_edge("A", "B") assert not G.has_edge("A", "C") assert G.has_edge(*("A", "B")) if G.is_directed(): assert not G.has_edge("B", "A") else: # G is undirected, so B->A is an edge assert G.has_edge("B", "A") G.add_edge("A", "C") # test directedness G.add_edge("C", "A") G.remove_edge("C", "A") if G.is_directed(): assert G.has_edge("A", "C") else: assert not G.has_edge("A", "C") assert not G.has_edge("C", "A") def test_self_loop(self): G = self.G() G.add_edge("A", "A") # test self loops assert G.has_edge("A", "A") G.remove_edge("A", "A") G.add_edge("X", "X") assert G.has_node("X") G.remove_node("X") G.add_edge("A", "Z") # should add the node silently assert G.has_node("Z") def test_add_edges_from(self): G = self.G() G.add_edges_from([("B", "C")]) # test add_edges_from() assert G.has_edge("B", "C") if G.is_directed(): assert not G.has_edge("C", "B") else: assert G.has_edge("C", "B") # undirected G.add_edges_from([("D", "F"), ("B", "D")]) assert G.has_edge("D", "F") assert G.has_edge("B", "D") if G.is_directed(): assert not G.has_edge("D", "B") else: assert G.has_edge("D", "B") # undirected def test_add_edges_from2(self): G = self.G() # after failing silently, should add 2nd edge G.add_edges_from([tuple("IJ"), list("KK"), tuple("JK")]) assert G.has_edge(*("I", "J")) assert G.has_edge(*("K", "K")) assert G.has_edge(*("J", "K")) if G.is_directed(): assert not G.has_edge(*("K", "J")) else: assert G.has_edge(*("K", "J")) def test_add_edges_from3(self): G = self.G() G.add_edges_from(zip(list("ACD"), list("CDE"))) assert G.has_edge("D", "E") assert not G.has_edge("E", "C") def test_remove_edge(self): G = self.G() G.add_nodes_from([1, 2, 3, "A", "B", "C", "D", "E", "F", "G", "H"]) G.add_edges_from(zip(list("MNOP"), list("NOPM"))) assert G.has_edge("O", "P") assert G.has_edge("P", "M") G.remove_node("P") # tests remove_node()'s handling of edges. assert not G.has_edge("P", "M") pytest.raises(TypeError, G.remove_edge, "M") G.add_edge("N", "M") assert G.has_edge("M", "N") G.remove_edge("M", "N") assert not G.has_edge("M", "N") # self loop fails silently G.remove_edges_from([list("HI"), list("DF"), tuple("KK"), tuple("JK")]) assert not G.has_edge("H", "I") assert not G.has_edge("J", "K") G.remove_edges_from([list("IJ"), list("KK"), list("JK")]) assert not G.has_edge("I", "J") G.remove_nodes_from(set("ZEFHIMNO")) G.add_edge("J", "K") def test_edges_nbunch(self): # Test G.edges(nbunch) with various forms of nbunch G = self.G() G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]) # node not in nbunch should be quietly ignored pytest.raises(nx.NetworkXError, G.edges, 6) assert list(G.edges("Z")) == [] # iterable non-node # nbunch can be an empty list assert list(G.edges([])) == [] if G.is_directed(): elist = [("A", "B"), ("A", "C"), ("B", "D")] else: elist = [("A", "B"), ("A", "C"), ("B", "C"), ("B", "D")] # nbunch can be a list assert edges_equal(list(G.edges(["A", "B"])), elist) # nbunch can be a set assert edges_equal(G.edges({"A", "B"}), elist) # nbunch can be a graph G1 = self.G() G1.add_nodes_from("AB") assert edges_equal(G.edges(G1), elist) # nbunch can be a dict with nodes as keys ndict = {"A": "thing1", "B": "thing2"} assert edges_equal(G.edges(ndict), elist) # nbunch can be a single node assert edges_equal(list(G.edges("A")), [("A", "B"), ("A", "C")]) assert nodes_equal(sorted(G), ["A", "B", "C", "D"]) # nbunch can be nothing (whole graph) assert edges_equal( list(G.edges()), [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")], ) def test_degree(self): G = self.G() G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]) assert G.degree("A") == 2 # degree of single node in iterable container must return dict assert list(G.degree(["A"])) == [("A", 2)] assert sorted(d for n, d in G.degree(["A", "B"])) == [2, 3] assert sorted(d for n, d in G.degree()) == [2, 2, 3, 3] def test_degree2(self): H = self.G() H.add_edges_from([(1, 24), (1, 2)]) assert sorted(d for n, d in H.degree([1, 24])) == [1, 2] def test_degree_graph(self): P3 = nx.path_graph(3) P5 = nx.path_graph(5) # silently ignore nodes not in P3 assert dict(d for n, d in P3.degree(["A", "B"])) == {} # nbunch can be a graph assert sorted(d for n, d in P5.degree(P3)) == [1, 2, 2] # nbunch can be a graph that's way too big assert sorted(d for n, d in P3.degree(P5)) == [1, 1, 2] assert list(P5.degree([])) == [] assert dict(P5.degree([])) == {} def test_null(self): null = nx.null_graph() assert list(null.degree()) == [] assert dict(null.degree()) == {} def test_order_size(self): G = self.G() G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]) assert G.order() == 4 assert G.size() == 5 assert G.number_of_edges() == 5 assert G.number_of_edges("A", "B") == 1 assert G.number_of_edges("A", "D") == 0 def test_copy(self): G = self.G() H = G.copy() # copy assert H.adj == G.adj assert H.name == G.name assert H is not G def test_subgraph(self): G = self.G() G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]) SG = G.subgraph(["A", "B", "D"]) assert nodes_equal(list(SG), ["A", "B", "D"]) assert edges_equal(list(SG.edges()), [("A", "B"), ("B", "D")]) def test_to_directed(self): G = self.G() if not G.is_directed(): G.add_edges_from( [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")] ) DG = G.to_directed() assert DG is not G # directed copy or copy assert DG.is_directed() assert DG.name == G.name assert DG.adj == G.adj assert sorted(DG.out_edges(list("AB"))) == [ ("A", "B"), ("A", "C"), ("B", "A"), ("B", "C"), ("B", "D"), ] DG.remove_edge("A", "B") assert DG.has_edge("B", "A") # this removes B-A but not A-B assert not DG.has_edge("A", "B") def test_to_undirected(self): G = self.G() if G.is_directed(): G.add_edges_from( [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")] ) UG = G.to_undirected() # to_undirected assert UG is not G assert not UG.is_directed() assert G.is_directed() assert UG.name == G.name assert UG.adj != G.adj assert sorted(UG.edges(list("AB"))) == [ ("A", "B"), ("A", "C"), ("B", "C"), ("B", "D"), ] assert sorted(UG.edges(["A", "B"])) == [ ("A", "B"), ("A", "C"), ("B", "C"), ("B", "D"), ] UG.remove_edge("A", "B") assert not UG.has_edge("B", "A") assert not UG.has_edge("A", "B") def test_neighbors(self): G = self.G() G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]) G.add_nodes_from("GJK") assert sorted(G["A"]) == ["B", "C"] assert sorted(G.neighbors("A")) == ["B", "C"] assert sorted(G.neighbors("A")) == ["B", "C"] assert sorted(G.neighbors("G")) == [] pytest.raises(nx.NetworkXError, G.neighbors, "j") def test_iterators(self): G = self.G() G.add_edges_from([("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")]) G.add_nodes_from("GJK") assert sorted(G.nodes()) == ["A", "B", "C", "D", "G", "J", "K"] assert edges_equal( G.edges(), [("A", "B"), ("A", "C"), ("B", "D"), ("C", "B"), ("C", "D")] ) assert sorted(v for k, v in G.degree()) == [0, 0, 0, 2, 2, 3, 3] assert sorted(G.degree(), key=str) == [ ("A", 2), ("B", 3), ("C", 3), ("D", 2), ("G", 0), ("J", 0), ("K", 0), ] assert sorted(G.neighbors("A")) == ["B", "C"] pytest.raises(nx.NetworkXError, G.neighbors, "X") G.clear() assert nx.number_of_nodes(G) == 0 assert nx.number_of_edges(G) == 0 def test_null_subgraph(self): # Subgraph of a null graph is a null graph nullgraph = nx.null_graph() G = nx.null_graph() H = G.subgraph([]) assert nx.is_isomorphic(H, nullgraph) def test_empty_subgraph(self): # Subgraph of an empty graph is an empty graph. test 1 nullgraph = nx.null_graph() E5 = nx.empty_graph(5) E10 = nx.empty_graph(10) H = E10.subgraph([]) assert nx.is_isomorphic(H, nullgraph) H = E10.subgraph([1, 2, 3, 4, 5]) assert nx.is_isomorphic(H, E5) def test_complete_subgraph(self): # Subgraph of a complete graph is a complete graph K1 = nx.complete_graph(1) K3 = nx.complete_graph(3) K5 = nx.complete_graph(5) H = K5.subgraph([1, 2, 3]) assert nx.is_isomorphic(H, K3) def test_subgraph_nbunch(self): nullgraph = nx.null_graph() K1 = nx.complete_graph(1) K3 = nx.complete_graph(3) K5 = nx.complete_graph(5) # Test G.subgraph(nbunch), where nbunch is a single node H = K5.subgraph(1) assert nx.is_isomorphic(H, K1) # Test G.subgraph(nbunch), where nbunch is a set H = K5.subgraph({1}) assert nx.is_isomorphic(H, K1) # Test G.subgraph(nbunch), where nbunch is an iterator H = K5.subgraph(iter(K3)) assert nx.is_isomorphic(H, K3) # Test G.subgraph(nbunch), where nbunch is another graph H = K5.subgraph(K3) assert nx.is_isomorphic(H, K3) H = K5.subgraph([9]) assert nx.is_isomorphic(H, nullgraph) def test_node_tuple_issue(self): H = self.G() # Test error handling of tuple as a node pytest.raises(nx.NetworkXError, H.remove_node, (1, 2)) H.remove_nodes_from([(1, 2)]) # no error pytest.raises(nx.NetworkXError, H.neighbors, (1, 2))