"""Unit tests for layout functions.""" import networkx as nx import pytest np = pytest.importorskip("numpy") pytest.importorskip("scipy") class TestLayout: @classmethod def setup_class(cls): cls.Gi = nx.grid_2d_graph(5, 5) cls.Gs = nx.Graph() nx.add_path(cls.Gs, "abcdef") cls.bigG = nx.grid_2d_graph(25, 25) # > 500 nodes for sparse def test_spring_fixed_without_pos(self): G = nx.path_graph(4) pytest.raises(ValueError, nx.spring_layout, G, fixed=[0]) pos = {0: (1, 1), 2: (0, 0)} pytest.raises(ValueError, nx.spring_layout, G, fixed=[0, 1], pos=pos) nx.spring_layout(G, fixed=[0, 2], pos=pos) # No ValueError def test_spring_init_pos(self): # Tests GH #2448 import math G = nx.Graph() G.add_edges_from([(0, 1), (1, 2), (2, 0), (2, 3)]) init_pos = {0: (0.0, 0.0)} fixed_pos = [0] pos = nx.fruchterman_reingold_layout(G, pos=init_pos, fixed=fixed_pos) has_nan = any(math.isnan(c) for coords in pos.values() for c in coords) assert not has_nan, "values should not be nan" def test_smoke_empty_graph(self): G = [] nx.random_layout(G) nx.circular_layout(G) nx.planar_layout(G) nx.spring_layout(G) nx.fruchterman_reingold_layout(G) nx.spectral_layout(G) nx.shell_layout(G) nx.bipartite_layout(G, G) nx.spiral_layout(G) nx.multipartite_layout(G) nx.kamada_kawai_layout(G) def test_smoke_int(self): G = self.Gi nx.random_layout(G) nx.circular_layout(G) nx.planar_layout(G) nx.spring_layout(G) nx.fruchterman_reingold_layout(G) nx.fruchterman_reingold_layout(self.bigG) nx.spectral_layout(G) nx.spectral_layout(G.to_directed()) nx.spectral_layout(self.bigG) nx.spectral_layout(self.bigG.to_directed()) nx.shell_layout(G) nx.spiral_layout(G) nx.kamada_kawai_layout(G) nx.kamada_kawai_layout(G, dim=1) nx.kamada_kawai_layout(G, dim=3) def test_smoke_string(self): G = self.Gs nx.random_layout(G) nx.circular_layout(G) nx.planar_layout(G) nx.spring_layout(G) nx.fruchterman_reingold_layout(G) nx.spectral_layout(G) nx.shell_layout(G) nx.spiral_layout(G) nx.kamada_kawai_layout(G) nx.kamada_kawai_layout(G, dim=1) nx.kamada_kawai_layout(G, dim=3) def check_scale_and_center(self, pos, scale, center): center = np.array(center) low = center - scale hi = center + scale vpos = np.array(list(pos.values())) length = vpos.max(0) - vpos.min(0) assert (length <= 2 * scale).all() assert (vpos >= low).all() assert (vpos <= hi).all() def test_scale_and_center_arg(self): sc = self.check_scale_and_center c = (4, 5) G = nx.complete_graph(9) G.add_node(9) sc(nx.random_layout(G, center=c), scale=0.5, center=(4.5, 5.5)) # rest can have 2*scale length: [-scale, scale] sc(nx.spring_layout(G, scale=2, center=c), scale=2, center=c) sc(nx.spectral_layout(G, scale=2, center=c), scale=2, center=c) sc(nx.circular_layout(G, scale=2, center=c), scale=2, center=c) sc(nx.shell_layout(G, scale=2, center=c), scale=2, center=c) sc(nx.spiral_layout(G, scale=2, center=c), scale=2, center=c) sc(nx.kamada_kawai_layout(G, scale=2, center=c), scale=2, center=c) c = (2, 3, 5) sc(nx.kamada_kawai_layout(G, dim=3, scale=2, center=c), scale=2, center=c) def test_planar_layout_non_planar_input(self): G = nx.complete_graph(9) pytest.raises(nx.NetworkXException, nx.planar_layout, G) def test_smoke_planar_layout_embedding_input(self): embedding = nx.PlanarEmbedding() embedding.set_data({0: [1, 2], 1: [0, 2], 2: [0, 1]}) nx.planar_layout(embedding) def test_default_scale_and_center(self): sc = self.check_scale_and_center c = (0, 0) G = nx.complete_graph(9) G.add_node(9) sc(nx.random_layout(G), scale=0.5, center=(0.5, 0.5)) sc(nx.spring_layout(G), scale=1, center=c) sc(nx.spectral_layout(G), scale=1, center=c) sc(nx.circular_layout(G), scale=1, center=c) sc(nx.shell_layout(G), scale=1, center=c) sc(nx.spiral_layout(G), scale=1, center=c) sc(nx.kamada_kawai_layout(G), scale=1, center=c) c = (0, 0, 0) sc(nx.kamada_kawai_layout(G, dim=3), scale=1, center=c) def test_circular_planar_and_shell_dim_error(self): G = nx.path_graph(4) pytest.raises(ValueError, nx.circular_layout, G, dim=1) pytest.raises(ValueError, nx.shell_layout, G, dim=1) pytest.raises(ValueError, nx.shell_layout, G, dim=3) pytest.raises(ValueError, nx.planar_layout, G, dim=1) pytest.raises(ValueError, nx.planar_layout, G, dim=3) def test_adjacency_interface_numpy(self): A = nx.to_numpy_array(self.Gs) pos = nx.drawing.layout._fruchterman_reingold(A) assert pos.shape == (6, 2) pos = nx.drawing.layout._fruchterman_reingold(A, dim=3) assert pos.shape == (6, 3) pos = nx.drawing.layout._sparse_fruchterman_reingold(A) assert pos.shape == (6, 2) def test_adjacency_interface_scipy(self): A = nx.to_scipy_sparse_array(self.Gs, dtype="d") pos = nx.drawing.layout._sparse_fruchterman_reingold(A) assert pos.shape == (6, 2) pos = nx.drawing.layout._sparse_spectral(A) assert pos.shape == (6, 2) pos = nx.drawing.layout._sparse_fruchterman_reingold(A, dim=3) assert pos.shape == (6, 3) def test_single_nodes(self): G = nx.path_graph(1) vpos = nx.shell_layout(G) assert not vpos[0].any() G = nx.path_graph(4) vpos = nx.shell_layout(G, [[0], [1, 2], [3]]) assert not vpos[0].any() assert vpos[3].any() # ensure node 3 not at origin (#3188) assert np.linalg.norm(vpos[3]) <= 1 # ensure node 3 fits (#3753) vpos = nx.shell_layout(G, [[0], [1, 2], [3]], rotate=0) assert np.linalg.norm(vpos[3]) <= 1 # ensure node 3 fits (#3753) def test_smoke_initial_pos_fruchterman_reingold(self): pos = nx.circular_layout(self.Gi) npos = nx.fruchterman_reingold_layout(self.Gi, pos=pos) def test_fixed_node_fruchterman_reingold(self): # Dense version (numpy based) pos = nx.circular_layout(self.Gi) npos = nx.spring_layout(self.Gi, pos=pos, fixed=[(0, 0)]) assert tuple(pos[(0, 0)]) == tuple(npos[(0, 0)]) # Sparse version (scipy based) pos = nx.circular_layout(self.bigG) npos = nx.spring_layout(self.bigG, pos=pos, fixed=[(0, 0)]) for axis in range(2): assert pos[(0, 0)][axis] == pytest.approx(npos[(0, 0)][axis], abs=1e-7) def test_center_parameter(self): G = nx.path_graph(1) nx.random_layout(G, center=(1, 1)) vpos = nx.circular_layout(G, center=(1, 1)) assert tuple(vpos[0]) == (1, 1) vpos = nx.planar_layout(G, center=(1, 1)) assert tuple(vpos[0]) == (1, 1) vpos = nx.spring_layout(G, center=(1, 1)) assert tuple(vpos[0]) == (1, 1) vpos = nx.fruchterman_reingold_layout(G, center=(1, 1)) assert tuple(vpos[0]) == (1, 1) vpos = nx.spectral_layout(G, center=(1, 1)) assert tuple(vpos[0]) == (1, 1) vpos = nx.shell_layout(G, center=(1, 1)) assert tuple(vpos[0]) == (1, 1) vpos = nx.spiral_layout(G, center=(1, 1)) assert tuple(vpos[0]) == (1, 1) def test_center_wrong_dimensions(self): G = nx.path_graph(1) assert id(nx.spring_layout) == id(nx.fruchterman_reingold_layout) pytest.raises(ValueError, nx.random_layout, G, center=(1, 1, 1)) pytest.raises(ValueError, nx.circular_layout, G, center=(1, 1, 1)) pytest.raises(ValueError, nx.planar_layout, G, center=(1, 1, 1)) pytest.raises(ValueError, nx.spring_layout, G, center=(1, 1, 1)) pytest.raises(ValueError, nx.spring_layout, G, dim=3, center=(1, 1)) pytest.raises(ValueError, nx.spectral_layout, G, center=(1, 1, 1)) pytest.raises(ValueError, nx.spectral_layout, G, dim=3, center=(1, 1)) pytest.raises(ValueError, nx.shell_layout, G, center=(1, 1, 1)) pytest.raises(ValueError, nx.spiral_layout, G, center=(1, 1, 1)) pytest.raises(ValueError, nx.kamada_kawai_layout, G, center=(1, 1, 1)) def test_empty_graph(self): G = nx.empty_graph() vpos = nx.random_layout(G, center=(1, 1)) assert vpos == {} vpos = nx.circular_layout(G, center=(1, 1)) assert vpos == {} vpos = nx.planar_layout(G, center=(1, 1)) assert vpos == {} vpos = nx.bipartite_layout(G, G) assert vpos == {} vpos = nx.spring_layout(G, center=(1, 1)) assert vpos == {} vpos = nx.fruchterman_reingold_layout(G, center=(1, 1)) assert vpos == {} vpos = nx.spectral_layout(G, center=(1, 1)) assert vpos == {} vpos = nx.shell_layout(G, center=(1, 1)) assert vpos == {} vpos = nx.spiral_layout(G, center=(1, 1)) assert vpos == {} vpos = nx.multipartite_layout(G, center=(1, 1)) assert vpos == {} vpos = nx.kamada_kawai_layout(G, center=(1, 1)) assert vpos == {} def test_bipartite_layout(self): G = nx.complete_bipartite_graph(3, 5) top, bottom = nx.bipartite.sets(G) vpos = nx.bipartite_layout(G, top) assert len(vpos) == len(G) top_x = vpos[list(top)[0]][0] bottom_x = vpos[list(bottom)[0]][0] for node in top: assert vpos[node][0] == top_x for node in bottom: assert vpos[node][0] == bottom_x vpos = nx.bipartite_layout( G, top, align="horizontal", center=(2, 2), scale=2, aspect_ratio=1 ) assert len(vpos) == len(G) top_y = vpos[list(top)[0]][1] bottom_y = vpos[list(bottom)[0]][1] for node in top: assert vpos[node][1] == top_y for node in bottom: assert vpos[node][1] == bottom_y pytest.raises(ValueError, nx.bipartite_layout, G, top, align="foo") def test_multipartite_layout(self): sizes = (0, 5, 7, 2, 8) G = nx.complete_multipartite_graph(*sizes) vpos = nx.multipartite_layout(G) assert len(vpos) == len(G) start = 0 for n in sizes: end = start + n assert all(vpos[start][0] == vpos[i][0] for i in range(start + 1, end)) start += n vpos = nx.multipartite_layout(G, align="horizontal", scale=2, center=(2, 2)) assert len(vpos) == len(G) start = 0 for n in sizes: end = start + n assert all(vpos[start][1] == vpos[i][1] for i in range(start + 1, end)) start += n pytest.raises(ValueError, nx.multipartite_layout, G, align="foo") def test_kamada_kawai_costfn_1d(self): costfn = nx.drawing.layout._kamada_kawai_costfn pos = np.array([4.0, 7.0]) invdist = 1 / np.array([[0.1, 2.0], [2.0, 0.3]]) cost, grad = costfn(pos, np, invdist, meanweight=0, dim=1) assert cost == pytest.approx(((3 / 2.0 - 1) ** 2), abs=1e-7) assert grad[0] == pytest.approx((-0.5), abs=1e-7) assert grad[1] == pytest.approx(0.5, abs=1e-7) def check_kamada_kawai_costfn(self, pos, invdist, meanwt, dim): costfn = nx.drawing.layout._kamada_kawai_costfn cost, grad = costfn(pos.ravel(), np, invdist, meanweight=meanwt, dim=dim) expected_cost = 0.5 * meanwt * np.sum(np.sum(pos, axis=0) ** 2) for i in range(pos.shape[0]): for j in range(i + 1, pos.shape[0]): diff = np.linalg.norm(pos[i] - pos[j]) expected_cost += (diff * invdist[i][j] - 1.0) ** 2 assert cost == pytest.approx(expected_cost, abs=1e-7) dx = 1e-4 for nd in range(pos.shape[0]): for dm in range(pos.shape[1]): idx = nd * pos.shape[1] + dm ps = pos.flatten() ps[idx] += dx cplus = costfn(ps, np, invdist, meanweight=meanwt, dim=pos.shape[1])[0] ps[idx] -= 2 * dx cminus = costfn(ps, np, invdist, meanweight=meanwt, dim=pos.shape[1])[0] assert grad[idx] == pytest.approx((cplus - cminus) / (2 * dx), abs=1e-5) def test_kamada_kawai_costfn(self): invdist = 1 / np.array([[0.1, 2.1, 1.7], [2.1, 0.2, 0.6], [1.7, 0.6, 0.3]]) meanwt = 0.3 # 2d pos = np.array([[1.3, -3.2], [2.7, -0.3], [5.1, 2.5]]) self.check_kamada_kawai_costfn(pos, invdist, meanwt, 2) # 3d pos = np.array([[0.9, 8.6, -8.7], [-10, -0.5, -7.1], [9.1, -8.1, 1.6]]) self.check_kamada_kawai_costfn(pos, invdist, meanwt, 3) def test_spiral_layout(self): G = self.Gs # a lower value of resolution should result in a more compact layout # intuitively, the total distance from the start and end nodes # via each node in between (transiting through each) will be less, # assuming rescaling does not occur on the computed node positions pos_standard = np.array(list(nx.spiral_layout(G, resolution=0.35).values())) pos_tighter = np.array(list(nx.spiral_layout(G, resolution=0.34).values())) distances = np.linalg.norm(pos_standard[:-1] - pos_standard[1:], axis=1) distances_tighter = np.linalg.norm(pos_tighter[:-1] - pos_tighter[1:], axis=1) assert sum(distances) > sum(distances_tighter) # return near-equidistant points after the first value if set to true pos_equidistant = np.array(list(nx.spiral_layout(G, equidistant=True).values())) distances_equidistant = np.linalg.norm( pos_equidistant[:-1] - pos_equidistant[1:], axis=1 ) assert np.allclose( distances_equidistant[1:], distances_equidistant[-1], atol=0.01 ) def test_spiral_layout_equidistant(self): G = nx.path_graph(10) pos = nx.spiral_layout(G, equidistant=True) # Extract individual node positions as an array p = np.array(list(pos.values())) # Elementwise-distance between node positions dist = np.linalg.norm(p[1:] - p[:-1], axis=1) assert np.allclose(np.diff(dist), 0, atol=1e-3) def test_rescale_layout_dict(self): G = nx.empty_graph() vpos = nx.random_layout(G, center=(1, 1)) assert nx.rescale_layout_dict(vpos) == {} G = nx.empty_graph(2) vpos = {0: (0.0, 0.0), 1: (1.0, 1.0)} s_vpos = nx.rescale_layout_dict(vpos) assert np.linalg.norm([sum(x) for x in zip(*s_vpos.values())]) < 1e-6 G = nx.empty_graph(3) vpos = {0: (0, 0), 1: (1, 1), 2: (0.5, 0.5)} s_vpos = nx.rescale_layout_dict(vpos) expectation = { 0: np.array((-1, -1)), 1: np.array((1, 1)), 2: np.array((0, 0)), } for k, v in expectation.items(): assert (s_vpos[k] == v).all() s_vpos = nx.rescale_layout_dict(vpos, scale=2) expectation = { 0: np.array((-2, -2)), 1: np.array((2, 2)), 2: np.array((0, 0)), } for k, v in expectation.items(): assert (s_vpos[k] == v).all() def test_multipartite_layout_nonnumeric_partition_labels(): """See gh-5123.""" G = nx.Graph() G.add_node(0, subset="s0") G.add_node(1, subset="s0") G.add_node(2, subset="s1") G.add_node(3, subset="s1") G.add_edges_from([(0, 2), (0, 3), (1, 2)]) pos = nx.multipartite_layout(G) assert len(pos) == len(G)