"""Unit tests for matplotlib drawing functions.""" import os import itertools import pytest mpl = pytest.importorskip("matplotlib") mpl.use("PS") plt = pytest.importorskip("matplotlib.pyplot") plt.rcParams["text.usetex"] = False import networkx as nx barbell = nx.barbell_graph(4, 6) def test_draw(): try: functions = [ nx.draw_circular, nx.draw_kamada_kawai, nx.draw_planar, nx.draw_random, nx.draw_spectral, nx.draw_spring, nx.draw_shell, ] options = [{"node_color": "black", "node_size": 100, "width": 3}] for function, option in itertools.product(functions, options): function(barbell, **option) plt.savefig("test.ps") finally: try: os.unlink("test.ps") except OSError: pass def test_draw_shell_nlist(): try: nlist = [list(range(4)), list(range(4, 10)), list(range(10, 14))] nx.draw_shell(barbell, nlist=nlist) plt.savefig("test.ps") finally: try: os.unlink("test.ps") except OSError: pass def test_edge_colormap(): colors = range(barbell.number_of_edges()) nx.draw_spring( barbell, edge_color=colors, width=4, edge_cmap=plt.cm.Blues, with_labels=True ) # plt.show() def test_arrows(): nx.draw_spring(barbell.to_directed()) # plt.show() @pytest.mark.parametrize( ("edge_color", "expected"), ( (None, "black"), # Default ("r", "red"), # Non-default color string (["r"], "red"), # Single non-default color in a list ((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple ([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list ((0, 1, 0, 1), "lime"), # single color as rgba tuple ([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list ("#0000ff", "blue"), # single color hex code (["#0000ff"], "blue"), # hex code in list ), ) @pytest.mark.parametrize("edgelist", (None, [(0, 1)])) def test_single_edge_color_undirected(edge_color, expected, edgelist): """Tests ways of specifying all edges have a single color for edges drawn with a LineCollection""" G = nx.path_graph(3) drawn_edges = nx.draw_networkx_edges( G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color ) assert mpl.colors.same_color(drawn_edges.get_color(), expected) @pytest.mark.parametrize( ("edge_color", "expected"), ( (None, "black"), # Default ("r", "red"), # Non-default color string (["r"], "red"), # Single non-default color in a list ((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple ([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list ((0, 1, 0, 1), "lime"), # single color as rgba tuple ([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list ("#0000ff", "blue"), # single color hex code (["#0000ff"], "blue"), # hex code in list ), ) @pytest.mark.parametrize("edgelist", (None, [(0, 1)])) def test_single_edge_color_directed(edge_color, expected, edgelist): """Tests ways of specifying all edges have a single color for edges drawn with FancyArrowPatches""" G = nx.path_graph(3, create_using=nx.DiGraph) drawn_edges = nx.draw_networkx_edges( G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color ) for fap in drawn_edges: assert mpl.colors.same_color(fap.get_edgecolor(), expected) def test_edge_color_tuple_interpretation(): """If edge_color is a sequence with the same length as edgelist, then each value in edge_color is mapped onto each edge via colormap.""" G = nx.path_graph(6, create_using=nx.DiGraph) pos = {n: (n, n) for n in range(len(G))} # num edges != 3 or 4 --> edge_color interpreted as rgb(a) for ec in ((0, 0, 1), (0, 0, 1, 1)): # More than 4 edges drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=ec) for fap in drawn_edges: assert mpl.colors.same_color(fap.get_edgecolor(), ec) # Fewer than 3 edges drawn_edges = nx.draw_networkx_edges( G, pos, edgelist=[(0, 1), (1, 2)], edge_color=ec ) for fap in drawn_edges: assert mpl.colors.same_color(fap.get_edgecolor(), ec) # num edges == 3, len(edge_color) == 4: interpreted as rgba drawn_edges = nx.draw_networkx_edges( G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1, 1) ) for fap in drawn_edges: assert mpl.colors.same_color(fap.get_edgecolor(), "blue") # num edges == 4, len(edge_color) == 3: interpreted as rgb drawn_edges = nx.draw_networkx_edges( G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1) ) for fap in drawn_edges: assert mpl.colors.same_color(fap.get_edgecolor(), "blue") # num edges == len(edge_color) == 3: interpreted with cmap, *not* as rgb drawn_edges = nx.draw_networkx_edges( G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1) ) assert mpl.colors.same_color( drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor() ) for fap in drawn_edges: assert not mpl.colors.same_color(fap.get_edgecolor(), "blue") # num edges == len(edge_color) == 4: interpreted with cmap, *not* as rgba drawn_edges = nx.draw_networkx_edges( G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1, 1) ) assert mpl.colors.same_color( drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor() ) assert mpl.colors.same_color( drawn_edges[2].get_edgecolor(), drawn_edges[3].get_edgecolor() ) for fap in drawn_edges: assert not mpl.colors.same_color(fap.get_edgecolor(), "blue") def test_fewer_edge_colors_than_num_edges_directed(): """Test that the edge colors are cycled when there are fewer specified colors than edges.""" G = barbell.to_directed() pos = nx.random_layout(barbell) edgecolors = ("r", "g", "b") drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors) for fap, expected in zip(drawn_edges, itertools.cycle(edgecolors)): assert mpl.colors.same_color(fap.get_edgecolor(), expected) def test_more_edge_colors_than_num_edges_directed(): """Test that extra edge colors are ignored when there are more specified colors than edges.""" G = nx.path_graph(4, create_using=nx.DiGraph) # 3 edges pos = nx.random_layout(barbell) edgecolors = ("r", "g", "b", "c") # 4 edge colors drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors) for fap, expected in zip(drawn_edges, edgecolors[:-1]): assert mpl.colors.same_color(fap.get_edgecolor(), expected) def test_edge_color_string_with_gloabl_alpha_undirected(): edge_collection = nx.draw_networkx_edges( barbell, pos=nx.random_layout(barbell), edgelist=[(0, 1), (1, 2)], edge_color="purple", alpha=0.2, ) ec = edge_collection.get_color().squeeze() # as rgba tuple assert len(edge_collection.get_paths()) == 2 assert mpl.colors.same_color(ec[:-1], "purple") assert ec[-1] == 0.2 def test_edge_color_string_with_global_alpha_directed(): drawn_edges = nx.draw_networkx_edges( barbell.to_directed(), pos=nx.random_layout(barbell), edgelist=[(0, 1), (1, 2)], edge_color="purple", alpha=0.2, ) assert len(drawn_edges) == 2 for fap in drawn_edges: ec = fap.get_edgecolor() # As rgba tuple assert mpl.colors.same_color(ec[:-1], "purple") assert ec[-1] == 0.2 @pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph)) def test_edge_width_default_value(graph_type): """Test the default linewidth for edges drawn either via LineCollection or FancyArrowPatches.""" G = nx.path_graph(2, create_using=graph_type) pos = {n: (n, n) for n in range(len(G))} drawn_edges = nx.draw_networkx_edges(G, pos) if isinstance(drawn_edges, list): # directed case: list of FancyArrowPatch drawn_edges = drawn_edges[0] assert drawn_edges.get_linewidth() == 1 @pytest.mark.parametrize( ("edgewidth", "expected"), ( (3, 3), # single-value, non-default ([3], 3), # Single value as a list ), ) def test_edge_width_single_value_undirected(edgewidth, expected): G = nx.path_graph(4) pos = {n: (n, n) for n in range(len(G))} drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth) assert len(drawn_edges.get_paths()) == 3 assert drawn_edges.get_linewidth() == expected @pytest.mark.parametrize( ("edgewidth", "expected"), ( (3, 3), # single-value, non-default ([3], 3), # Single value as a list ), ) def test_edge_width_single_value_directed(edgewidth, expected): G = nx.path_graph(4, create_using=nx.DiGraph) pos = {n: (n, n) for n in range(len(G))} drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth) assert len(drawn_edges) == 3 for fap in drawn_edges: assert fap.get_linewidth() == expected @pytest.mark.parametrize( "edgelist", ( [(0, 1), (1, 2), (2, 3)], # one width specification per edge None, # fewer widths than edges - widths cycle [(0, 1), (1, 2)], # More widths than edges - unused widths ignored ), ) def test_edge_width_sequence(edgelist): G = barbell.to_directed() pos = nx.random_layout(G) widths = (0.5, 2.0, 12.0) drawn_edges = nx.draw_networkx_edges(G, pos, edgelist=edgelist, width=widths) for fap, expected_width in zip(drawn_edges, itertools.cycle(widths)): assert fap.get_linewidth() == expected_width def test_edge_color_with_edge_vmin_vmax(): """Test that edge_vmin and edge_vmax properly set the dynamic range of the color map when num edges == len(edge_colors).""" G = nx.path_graph(3, create_using=nx.DiGraph) pos = nx.random_layout(G) # Extract colors from the original (unscaled) colormap drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=[0, 1.0]) orig_colors = [e.get_edgecolor() for e in drawn_edges] # Colors from scaled colormap drawn_edges = nx.draw_networkx_edges( G, pos, edge_color=[0.2, 0.8], edge_vmin=0.2, edge_vmax=0.8 ) scaled_colors = [e.get_edgecolor() for e in drawn_edges] assert mpl.colors.same_color(orig_colors, scaled_colors) def test_directed_edges_linestyle_default(): """Test default linestyle for edges drawn with FancyArrowPatches.""" G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges pos = {n: (n, n) for n in range(len(G))} # edge with default style drawn_edges = nx.draw_networkx_edges(G, pos) assert len(drawn_edges) == 3 for fap in drawn_edges: assert fap.get_linestyle() == "solid" @pytest.mark.parametrize( "style", ( "dashed", # edge with string style "--", # edge with simplified string style (1, (1, 1)), # edge with (offset, onoffseq) style ), ) def test_directed_edges_linestyle_single_value(style): """Tests support for specifying linestyles with a single value to be applied to all edges in ``draw_networkx_edges`` for FancyArrowPatch outputs (e.g. directed edges).""" G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges pos = {n: (n, n) for n in range(len(G))} drawn_edges = nx.draw_networkx_edges(G, pos, style=style) assert len(drawn_edges) == 3 for fap in drawn_edges: assert fap.get_linestyle() == style @pytest.mark.parametrize( "style_seq", ( ["dashed"], # edge with string style in list ["--"], # edge with simplified string style in list [(1, (1, 1))], # edge with (offset, onoffseq) style in list ["--", "-", ":"], # edges with styles for each edge ["--", "-"], # edges with fewer styles than edges (styles cycle) ["--", "-", ":", "-."], # edges with more styles than edges (extra unused) ), ) def test_directed_edges_linestyle_sequence(style_seq): """Tests support for specifying linestyles with sequences in ``draw_networkx_edges`` for FancyArrowPatch outputs (e.g. directed edges).""" G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges pos = {n: (n, n) for n in range(len(G))} drawn_edges = nx.draw_networkx_edges(G, pos, style=style_seq) assert len(drawn_edges) == 3 for fap, style in zip(drawn_edges, itertools.cycle(style_seq)): assert fap.get_linestyle() == style def test_labels_and_colors(): G = nx.cubical_graph() pos = nx.spring_layout(G) # positions for all nodes # nodes nx.draw_networkx_nodes( G, pos, nodelist=[0, 1, 2, 3], node_color="r", node_size=500, alpha=0.75 ) nx.draw_networkx_nodes( G, pos, nodelist=[4, 5, 6, 7], node_color="b", node_size=500, alpha=[0.25, 0.5, 0.75, 1.0], ) # edges nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5) nx.draw_networkx_edges( G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)], width=8, alpha=0.5, edge_color="r", ) nx.draw_networkx_edges( G, pos, edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)], width=8, alpha=0.5, edge_color="b", ) nx.draw_networkx_edges( G, pos, edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)], min_source_margin=0.5, min_target_margin=0.75, width=8, edge_color="b", ) # some math labels labels = {} labels[0] = r"$a$" labels[1] = r"$b$" labels[2] = r"$c$" labels[3] = r"$d$" labels[4] = r"$\alpha$" labels[5] = r"$\beta$" labels[6] = r"$\gamma$" labels[7] = r"$\delta$" nx.draw_networkx_labels(G, pos, labels, font_size=16) nx.draw_networkx_edge_labels(G, pos, edge_labels=None, rotate=False) nx.draw_networkx_edge_labels(G, pos, edge_labels={(4, 5): "4-5"}) # plt.show() @pytest.mark.mpl_image_compare def test_house_with_colors(): G = nx.house_graph() # explicitly set positions fig, ax = plt.subplots() pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)} # Plot nodes with different properties for the "wall" and "roof" nodes nx.draw_networkx_nodes( G, pos, node_size=3000, nodelist=[0, 1, 2, 3], node_color="tab:blue", ) nx.draw_networkx_nodes( G, pos, node_size=2000, nodelist=[4], node_color="tab:orange" ) nx.draw_networkx_edges(G, pos, alpha=0.5, width=6) # Customize axes ax.margins(0.11) plt.tight_layout() plt.axis("off") return fig def test_axes(): fig, ax = plt.subplots() nx.draw(barbell, ax=ax) nx.draw_networkx_edge_labels(barbell, nx.circular_layout(barbell), ax=ax) def test_empty_graph(): G = nx.Graph() nx.draw(G) def test_draw_empty_nodes_return_values(): # See Issue #3833 import matplotlib.collections # call as mpl.collections G = nx.Graph([(1, 2), (2, 3)]) DG = nx.DiGraph([(1, 2), (2, 3)]) pos = nx.circular_layout(G) assert isinstance( nx.draw_networkx_nodes(G, pos, nodelist=[]), mpl.collections.PathCollection ) assert isinstance( nx.draw_networkx_nodes(DG, pos, nodelist=[]), mpl.collections.PathCollection ) # drawing empty edges used to return an empty LineCollection or empty list. # Now it is always an empty list (because edges are now lists of FancyArrows) assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=True) == [] assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=False) == [] assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=False) == [] assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=True) == [] def test_multigraph_edgelist_tuples(): # See Issue #3295 G = nx.path_graph(3, create_using=nx.MultiDiGraph) nx.draw_networkx(G, edgelist=[(0, 1, 0)]) nx.draw_networkx(G, edgelist=[(0, 1, 0)], node_size=[10, 20, 0]) def test_alpha_iter(): pos = nx.random_layout(barbell) # with fewer alpha elements than nodes plt.subplot(131) nx.draw_networkx_nodes(barbell, pos, alpha=[0.1, 0.2]) # with equal alpha elements and nodes num_nodes = len(barbell.nodes) alpha = [x / num_nodes for x in range(num_nodes)] colors = range(num_nodes) plt.subplot(132) nx.draw_networkx_nodes(barbell, pos, node_color=colors, alpha=alpha) # with more alpha elements than nodes alpha.append(1) plt.subplot(133) nx.draw_networkx_nodes(barbell, pos, alpha=alpha) def test_error_invalid_kwds(): with pytest.raises(ValueError, match="Received invalid argument"): nx.draw(barbell, foo="bar") def test_draw_networkx_arrowsize_incorrect_size(): G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 3)]) arrowsize = [1, 2, 3] with pytest.raises( ValueError, match="arrowsize should have the same length as edgelist" ): nx.draw(G, arrowsize=arrowsize) @pytest.mark.parametrize("arrowsize", (30, [10, 20, 30])) def test_draw_edges_arrowsize(arrowsize): G = nx.DiGraph([(0, 1), (0, 2), (1, 2)]) pos = {0: (0, 0), 1: (0, 1), 2: (1, 0)} edges = nx.draw_networkx_edges(G, pos=pos, arrowsize=arrowsize) arrowsize = itertools.repeat(arrowsize) if isinstance(arrowsize, int) else arrowsize for fap, expected in zip(edges, arrowsize): assert isinstance(fap, mpl.patches.FancyArrowPatch) assert fap.get_mutation_scale() == expected def test_np_edgelist(): # see issue #4129 np = pytest.importorskip("numpy") nx.draw_networkx(barbell, edgelist=np.array([(0, 2), (0, 3)])) def test_draw_nodes_missing_node_from_position(): G = nx.path_graph(3) pos = {0: (0, 0), 1: (1, 1)} # No position for node 2 with pytest.raises(nx.NetworkXError, match="has no position"): nx.draw_networkx_nodes(G, pos) # NOTE: parametrizing on marker to test both branches of internal # nx.draw_networkx_edges.to_marker_edge function @pytest.mark.parametrize("node_shape", ("o", "s")) def test_draw_edges_min_source_target_margins(node_shape): """Test that there is a wider gap between the node and the start of an incident edge when min_source_margin is specified. This test checks that the use of min_{source/target}_margin kwargs result in shorter (more padding) between the edges and source and target nodes. As a crude visual example, let 's' and 't' represent source and target nodes, respectively: Default: s-----------------------------t With margins: s ----------------------- t """ # Create a single axis object to get consistent pixel coords across # multiple draws fig, ax = plt.subplots() G = nx.DiGraph([(0, 1)]) pos = {0: (0, 0), 1: (1, 0)} # horizontal layout # Get leftmost and rightmost points of the FancyArrowPatch object # representing the edge between nodes 0 and 1 (in pixel coordinates) default_patch = nx.draw_networkx_edges(G, pos, ax=ax, node_shape=node_shape)[0] default_extent = default_patch.get_extents().corners()[::2, 0] # Now, do the same but with "padding" for the source and target via the # min_{source/target}_margin kwargs padded_patch = nx.draw_networkx_edges( G, pos, ax=ax, node_shape=node_shape, min_source_margin=100, min_target_margin=100, )[0] padded_extent = padded_patch.get_extents().corners()[::2, 0] # With padding, the left-most extent of the edge should be further to the # right assert padded_extent[0] > default_extent[0] # And the rightmost extent of the edge, further to the left assert padded_extent[1] < default_extent[1] def test_nonzero_selfloop_with_single_node(): """Ensure that selfloop extent is non-zero when there is only one node.""" # Create explicit axis object for test fig, ax = plt.subplots() # Graph with single node + self loop G = nx.DiGraph() G.add_node(0) G.add_edge(0, 0) # Draw patch = nx.draw_networkx_edges(G, {0: (0, 0)})[0] # The resulting patch must have non-zero extent bbox = patch.get_extents() assert bbox.width > 0 and bbox.height > 0 # Cleanup plt.delaxes(ax) def test_nonzero_selfloop_with_single_edge_in_edgelist(): """Ensure that selfloop extent is non-zero when only a single edge is specified in the edgelist. """ # Create explicit axis object for test fig, ax = plt.subplots() # Graph with selfloop G = nx.path_graph(2, create_using=nx.DiGraph) G.add_edge(1, 1) pos = {n: (n, n) for n in G.nodes} # Draw only the selfloop edge via the `edgelist` kwarg patch = nx.draw_networkx_edges(G, pos, edgelist=[(1, 1)])[0] # The resulting patch must have non-zero extent bbox = patch.get_extents() assert bbox.width > 0 and bbox.height > 0 # Cleanup plt.delaxes(ax) def test_apply_alpha(): """Test apply_alpha when there is a mismatch between the number of supplied colors and elements. """ nodelist = [0, 1, 2] colorlist = ["r", "g", "b"] alpha = 0.5 rgba_colors = nx.drawing.nx_pylab.apply_alpha(colorlist, alpha, nodelist) assert all(rgba_colors[:, -1] == alpha) def test_draw_edges_toggling_with_arrows_kwarg(): """ The `arrows` keyword argument is used as a 3-way switch to select which type of object to use for drawing edges: - ``arrows=None`` -> default (FancyArrowPatches for directed, else LineCollection) - ``arrows=True`` -> FancyArrowPatches - ``arrows=False`` -> LineCollection """ import matplotlib.patches import matplotlib.collections UG = nx.path_graph(3) DG = nx.path_graph(3, create_using=nx.DiGraph) pos = {n: (n, n) for n in UG} # Use FancyArrowPatches when arrows=True, regardless of graph type for G in (UG, DG): edges = nx.draw_networkx_edges(G, pos, arrows=True) assert len(edges) == len(G.edges) assert isinstance(edges[0], mpl.patches.FancyArrowPatch) # Use LineCollection when arrows=False, regardless of graph type for G in (UG, DG): edges = nx.draw_networkx_edges(G, pos, arrows=False) assert isinstance(edges, mpl.collections.LineCollection) # Default behavior when arrows=None: FAPs for directed, LC's for undirected edges = nx.draw_networkx_edges(UG, pos) assert isinstance(edges, mpl.collections.LineCollection) edges = nx.draw_networkx_edges(DG, pos) assert len(edges) == len(G.edges) assert isinstance(edges[0], mpl.patches.FancyArrowPatch) @pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx)) def test_draw_networkx_arrows_default_undirected(drawing_func): import matplotlib.collections G = nx.path_graph(3) fig, ax = plt.subplots() drawing_func(G, ax=ax) assert any(isinstance(c, mpl.collections.LineCollection) for c in ax.collections) assert not ax.patches plt.delaxes(ax) @pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx)) def test_draw_networkx_arrows_default_directed(drawing_func): import matplotlib.collections G = nx.path_graph(3, create_using=nx.DiGraph) fig, ax = plt.subplots() drawing_func(G, ax=ax) assert not any( isinstance(c, mpl.collections.LineCollection) for c in ax.collections ) assert ax.patches plt.delaxes(ax) def test_edgelist_kwarg_not_ignored(): # See gh-4994 G = nx.path_graph(3) G.add_edge(0, 0) fig, ax = plt.subplots() nx.draw(G, edgelist=[(0, 1), (1, 2)], ax=ax) # Exclude self-loop from edgelist assert not ax.patches plt.delaxes(ax) def test_draw_networkx_edge_label_multiedge_exception(): """ draw_networkx_edge_labels should raise an informative error message when the edge label includes keys """ exception_msg = "draw_networkx_edge_labels does not support multiedges" G = nx.MultiGraph() G.add_edge(0, 1, weight=10) G.add_edge(0, 1, weight=20) edge_labels = nx.get_edge_attributes(G, "weight") # Includes edge keys pos = {n: (n, n) for n in G} with pytest.raises(nx.NetworkXError, match=exception_msg): nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) def test_draw_networkx_edge_label_empty_dict(): """Regression test for draw_networkx_edge_labels with empty dict. See gh-5372.""" G = nx.path_graph(3) pos = {n: (n, n) for n in G.nodes} assert nx.draw_networkx_edge_labels(G, pos, edge_labels={}) == {}