from itertools import groupby import pytest import networkx as nx from networkx.utils import nodes_equal, edges_equal from networkx import graph_atlas from networkx import graph_atlas_g from networkx.generators.atlas import NUM_GRAPHS from networkx.utils import pairwise class TestAtlasGraph: """Unit tests for the :func:`~networkx.graph_atlas` function.""" def test_index_too_small(self): with pytest.raises(ValueError): graph_atlas(-1) def test_index_too_large(self): with pytest.raises(ValueError): graph_atlas(NUM_GRAPHS) def test_graph(self): G = graph_atlas(6) assert nodes_equal(G.nodes(), range(3)) assert edges_equal(G.edges(), [(0, 1), (0, 2)]) class TestAtlasGraphG: """Unit tests for the :func:`~networkx.graph_atlas_g` function.""" @classmethod def setup_class(cls): cls.GAG = graph_atlas_g() def test_sizes(self): G = self.GAG[0] assert G.number_of_nodes() == 0 assert G.number_of_edges() == 0 G = self.GAG[7] assert G.number_of_nodes() == 3 assert G.number_of_edges() == 3 def test_names(self): for i, G in enumerate(self.GAG): assert int(G.name[1:]) == i def test_nondecreasing_nodes(self): # check for nondecreasing number of nodes for n1, n2 in pairwise(map(len, self.GAG)): assert n2 <= n1 + 1 def test_nondecreasing_edges(self): # check for nondecreasing number of edges (for fixed number of # nodes) for n, group in groupby(self.GAG, key=nx.number_of_nodes): for m1, m2 in pairwise(map(nx.number_of_edges, group)): assert m2 <= m1 + 1 def test_nondecreasing_degree_sequence(self): # Check for lexicographically nondecreasing degree sequences # (for fixed number of nodes and edges). # # There are three exceptions to this rule in the order given in # the "Atlas of Graphs" book, so we need to manually exclude # those. exceptions = [("G55", "G56"), ("G1007", "G1008"), ("G1012", "G1013")] for n, group in groupby(self.GAG, key=nx.number_of_nodes): for m, group in groupby(group, key=nx.number_of_edges): for G1, G2 in pairwise(group): if (G1.name, G2.name) in exceptions: continue d1 = sorted(d for v, d in G1.degree()) d2 = sorted(d for v, d in G2.degree()) assert d1 <= d2