"""Unit tests for the :mod:`networkx.generators.harary_graph` module. """ import pytest import networkx as nx from networkx.generators.harary_graph import hnm_harary_graph from networkx.generators.harary_graph import hkn_harary_graph from networkx.algorithms.isomorphism.isomorph import is_isomorphic class TestHararyGraph: """ Suppose n nodes, m >= n-1 edges, d = 2m // n, r = 2m % n """ def test_hnm_harary_graph(self): # When d is even and r = 0, the hnm_harary_graph(n,m) is # the circulant_graph(n, list(range(1,d/2+1))) for (n, m) in [(5, 5), (6, 12), (7, 14)]: G1 = hnm_harary_graph(n, m) d = 2 * m // n G2 = nx.circulant_graph(n, list(range(1, d // 2 + 1))) assert is_isomorphic(G1, G2) # When d is even and r > 0, the hnm_harary_graph(n,m) is # the circulant_graph(n, list(range(1,d/2+1))) # with r edges added arbitrarily for (n, m) in [(5, 7), (6, 13), (7, 16)]: G1 = hnm_harary_graph(n, m) d = 2 * m // n G2 = nx.circulant_graph(n, list(range(1, d // 2 + 1))) assert set(G2.edges) < set(G1.edges) assert G1.number_of_edges() == m # When d is odd and n is even and r = 0, the hnm_harary_graph(n,m) # is the circulant_graph(n, list(range(1,(d+1)/2) plus [n//2]) for (n, m) in [(6, 9), (8, 12), (10, 15)]: G1 = hnm_harary_graph(n, m) d = 2 * m // n L = list(range(1, (d + 1) // 2)) L.append(n // 2) G2 = nx.circulant_graph(n, L) assert is_isomorphic(G1, G2) # When d is odd and n is even and r > 0, the hnm_harary_graph(n,m) # is the circulant_graph(n, list(range(1,(d+1)/2) plus [n//2]) # with r edges added arbitrarily for (n, m) in [(6, 10), (8, 13), (10, 17)]: G1 = hnm_harary_graph(n, m) d = 2 * m // n L = list(range(1, (d + 1) // 2)) L.append(n // 2) G2 = nx.circulant_graph(n, L) assert set(G2.edges) < set(G1.edges) assert G1.number_of_edges() == m # When d is odd and n is odd, the hnm_harary_graph(n,m) is # the circulant_graph(n, list(range(1,(d+1)/2)) # with m - n*(d-1)/2 edges added arbitrarily for (n, m) in [(5, 4), (7, 12), (9, 14)]: G1 = hnm_harary_graph(n, m) d = 2 * m // n L = list(range(1, (d + 1) // 2)) G2 = nx.circulant_graph(n, L) assert set(G2.edges) < set(G1.edges) assert G1.number_of_edges() == m # Raise NetworkXError if n<1 n = 0 m = 0 pytest.raises(nx.NetworkXError, hnm_harary_graph, n, m) # Raise NetworkXError if m < n-1 n = 6 m = 4 pytest.raises(nx.NetworkXError, hnm_harary_graph, n, m) # Raise NetworkXError if m > n(n-1)/2 n = 6 m = 16 pytest.raises(nx.NetworkXError, hnm_harary_graph, n, m) """ Suppose connectivity k, number of nodes n """ def test_hkn_harary_graph(self): # When k == 1, the hkn_harary_graph(k,n) is # the path_graph(n) for (k, n) in [(1, 6), (1, 7)]: G1 = hkn_harary_graph(k, n) G2 = nx.path_graph(n) assert is_isomorphic(G1, G2) # When k is even, the hkn_harary_graph(k,n) is # the circulant_graph(n, list(range(1,k/2+1))) for (k, n) in [(2, 6), (2, 7), (4, 6), (4, 7)]: G1 = hkn_harary_graph(k, n) G2 = nx.circulant_graph(n, list(range(1, k // 2 + 1))) assert is_isomorphic(G1, G2) # When k is odd and n is even, the hkn_harary_graph(k,n) is # the circulant_graph(n, list(range(1,(k+1)/2)) plus [n/2]) for (k, n) in [(3, 6), (5, 8), (7, 10)]: G1 = hkn_harary_graph(k, n) L = list(range(1, (k + 1) // 2)) L.append(n // 2) G2 = nx.circulant_graph(n, L) assert is_isomorphic(G1, G2) # When k is odd and n is odd, the hkn_harary_graph(k,n) is # the circulant_graph(n, list(range(1,(k+1)/2))) with # n//2+1 edges added between node i and node i+n//2+1 for (k, n) in [(3, 5), (5, 9), (7, 11)]: G1 = hkn_harary_graph(k, n) G2 = nx.circulant_graph(n, list(range(1, (k + 1) // 2))) eSet1 = set(G1.edges) eSet2 = set(G2.edges) eSet3 = set() half = n // 2 for i in range(0, half + 1): # add half+1 edges between i and i+half eSet3.add((i, (i + half) % n)) assert eSet1 == eSet2 | eSet3 # Raise NetworkXError if k<1 k = 0 n = 0 pytest.raises(nx.NetworkXError, hkn_harary_graph, k, n) # Raise NetworkXError if n