"""Unit tests for the :mod:`networkx.generators.lattice` module.""" import pytest import networkx as nx from networkx.utils import edges_equal from itertools import product class TestGrid2DGraph: """Unit tests for :func:`networkx.generators.lattice.grid_2d_graph`""" def test_number_of_vertices(self): m, n = 5, 6 G = nx.grid_2d_graph(m, n) assert len(G) == m * n def test_degree_distribution(self): m, n = 5, 6 G = nx.grid_2d_graph(m, n) expected_histogram = [0, 0, 4, 2 * (m + n) - 8, (m - 2) * (n - 2)] assert nx.degree_histogram(G) == expected_histogram def test_directed(self): m, n = 5, 6 G = nx.grid_2d_graph(m, n) H = nx.grid_2d_graph(m, n, create_using=nx.DiGraph()) assert H.succ == G.adj assert H.pred == G.adj def test_multigraph(self): m, n = 5, 6 G = nx.grid_2d_graph(m, n) H = nx.grid_2d_graph(m, n, create_using=nx.MultiGraph()) assert list(H.edges()) == list(G.edges()) def test_periodic(self): G = nx.grid_2d_graph(0, 0, periodic=True) assert dict(G.degree()) == {} for m, n, H in [ (2, 2, nx.cycle_graph(4)), (1, 7, nx.cycle_graph(7)), (7, 1, nx.cycle_graph(7)), (2, 5, nx.circular_ladder_graph(5)), (5, 2, nx.circular_ladder_graph(5)), (2, 4, nx.cubical_graph()), (4, 2, nx.cubical_graph()), ]: G = nx.grid_2d_graph(m, n, periodic=True) assert nx.could_be_isomorphic(G, H) def test_periodic_iterable(self): m, n = 3, 7 for a, b in product([0, 1], [0, 1]): G = nx.grid_2d_graph(m, n, periodic=(a, b)) assert G.number_of_nodes() == m * n assert G.number_of_edges() == (m + a - 1) * n + (n + b - 1) * m def test_periodic_directed(self): G = nx.grid_2d_graph(4, 2, periodic=True) H = nx.grid_2d_graph(4, 2, periodic=True, create_using=nx.DiGraph()) assert H.succ == G.adj assert H.pred == G.adj def test_periodic_multigraph(self): G = nx.grid_2d_graph(4, 2, periodic=True) H = nx.grid_2d_graph(4, 2, periodic=True, create_using=nx.MultiGraph()) assert list(G.edges()) == list(H.edges()) def test_node_input(self): G = nx.grid_2d_graph(4, 2, periodic=True) H = nx.grid_2d_graph(range(4), range(2), periodic=True) assert nx.is_isomorphic(H, G) H = nx.grid_2d_graph("abcd", "ef", periodic=True) assert nx.is_isomorphic(H, G) G = nx.grid_2d_graph(5, 6) H = nx.grid_2d_graph(range(5), range(6)) assert edges_equal(H, G) class TestGridGraph: """Unit tests for :func:`networkx.generators.lattice.grid_graph`""" def test_grid_graph(self): """grid_graph([n,m]) is a connected simple graph with the following properties: number_of_nodes = n*m degree_histogram = [0,0,4,2*(n+m)-8,(n-2)*(m-2)] """ for n, m in [(3, 5), (5, 3), (4, 5), (5, 4)]: dim = [n, m] g = nx.grid_graph(dim) assert len(g) == n * m assert nx.degree_histogram(g) == [ 0, 0, 4, 2 * (n + m) - 8, (n - 2) * (m - 2), ] for n, m in [(1, 5), (5, 1)]: dim = [n, m] g = nx.grid_graph(dim) assert len(g) == n * m assert nx.is_isomorphic(g, nx.path_graph(5)) # mg = nx.grid_graph([n,m], create_using=MultiGraph()) # assert_equal(mg.edges(), g.edges()) def test_node_input(self): G = nx.grid_graph([range(7, 9), range(3, 6)]) assert len(G) == 2 * 3 assert nx.is_isomorphic(G, nx.grid_graph([2, 3])) def test_periodic_iterable(self): m, n, k = 3, 7, 5 for a, b, c in product([0, 1], [0, 1], [0, 1]): G = nx.grid_graph([m, n, k], periodic=(a, b, c)) num_e = (m + a - 1) * n * k + (n + b - 1) * m * k + (k + c - 1) * m * n assert G.number_of_nodes() == m * n * k assert G.number_of_edges() == num_e class TestHypercubeGraph: """Unit tests for :func:`networkx.generators.lattice.hypercube_graph`""" def test_special_cases(self): for n, H in [ (0, nx.null_graph()), (1, nx.path_graph(2)), (2, nx.cycle_graph(4)), (3, nx.cubical_graph()), ]: G = nx.hypercube_graph(n) assert nx.could_be_isomorphic(G, H) def test_degree_distribution(self): for n in range(1, 10): G = nx.hypercube_graph(n) expected_histogram = [0] * n + [2 ** n] assert nx.degree_histogram(G) == expected_histogram class TestTriangularLatticeGraph: "Tests for :func:`networkx.generators.lattice.triangular_lattice_graph`" def test_lattice_points(self): """Tests that the graph is really a triangular lattice.""" for m, n in [(2, 3), (2, 2), (2, 1), (3, 3), (3, 2), (3, 4)]: G = nx.triangular_lattice_graph(m, n) N = (n + 1) // 2 assert len(G) == (m + 1) * (1 + N) - (n % 2) * ((m + 1) // 2) for (i, j) in G.nodes(): nbrs = G[(i, j)] if i < N: assert (i + 1, j) in nbrs if j < m: assert (i, j + 1) in nbrs if j < m and (i > 0 or j % 2) and (i < N or (j + 1) % 2): assert (i + 1, j + 1) in nbrs or (i - 1, j + 1) in nbrs def test_directed(self): """Tests for creating a directed triangular lattice.""" G = nx.triangular_lattice_graph(3, 4, create_using=nx.Graph()) H = nx.triangular_lattice_graph(3, 4, create_using=nx.DiGraph()) assert H.is_directed() for u, v in H.edges(): assert v[1] >= u[1] if v[1] == u[1]: assert v[0] > u[0] def test_multigraph(self): """Tests for creating a triangular lattice multigraph.""" G = nx.triangular_lattice_graph(3, 4, create_using=nx.Graph()) H = nx.triangular_lattice_graph(3, 4, create_using=nx.MultiGraph()) assert list(H.edges()) == list(G.edges()) def test_periodic(self): G = nx.triangular_lattice_graph(4, 6, periodic=True) assert len(G) == 12 assert G.size() == 36 # all degrees are 6 assert len([n for n, d in G.degree() if d != 6]) == 0 G = nx.triangular_lattice_graph(5, 7, periodic=True) TLG = nx.triangular_lattice_graph pytest.raises(nx.NetworkXError, TLG, 2, 4, periodic=True) pytest.raises(nx.NetworkXError, TLG, 4, 4, periodic=True) pytest.raises(nx.NetworkXError, TLG, 2, 6, periodic=True) class TestHexagonalLatticeGraph: "Tests for :func:`networkx.generators.lattice.hexagonal_lattice_graph`" def test_lattice_points(self): """Tests that the graph is really a hexagonal lattice.""" for m, n in [(4, 5), (4, 4), (4, 3), (3, 2), (3, 3), (3, 5)]: G = nx.hexagonal_lattice_graph(m, n) assert len(G) == 2 * (m + 1) * (n + 1) - 2 C_6 = nx.cycle_graph(6) hexagons = [ [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)], [(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)], [(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)], [(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)], ] for hexagon in hexagons: assert nx.is_isomorphic(G.subgraph(hexagon), C_6) def test_directed(self): """Tests for creating a directed hexagonal lattice.""" G = nx.hexagonal_lattice_graph(3, 5, create_using=nx.Graph()) H = nx.hexagonal_lattice_graph(3, 5, create_using=nx.DiGraph()) assert H.is_directed() pos = nx.get_node_attributes(H, "pos") for u, v in H.edges(): assert pos[v][1] >= pos[u][1] if pos[v][1] == pos[u][1]: assert pos[v][0] > pos[u][0] def test_multigraph(self): """Tests for creating a hexagonal lattice multigraph.""" G = nx.hexagonal_lattice_graph(3, 5, create_using=nx.Graph()) H = nx.hexagonal_lattice_graph(3, 5, create_using=nx.MultiGraph()) assert list(H.edges()) == list(G.edges()) def test_periodic(self): G = nx.hexagonal_lattice_graph(4, 6, periodic=True) assert len(G) == 48 assert G.size() == 72 # all degrees are 3 assert len([n for n, d in G.degree() if d != 3]) == 0 G = nx.hexagonal_lattice_graph(5, 8, periodic=True) HLG = nx.hexagonal_lattice_graph pytest.raises(nx.NetworkXError, HLG, 2, 7, periodic=True) pytest.raises(nx.NetworkXError, HLG, 1, 4, periodic=True) pytest.raises(nx.NetworkXError, HLG, 2, 1, periodic=True)